研究生: |
賴柏宇 Lai, Bo-Yu |
---|---|
論文名稱: |
高反射對電極與四氯化鈦處理工作電極之染料敏化太陽電池效率提升研究 Study of Efficiency Improvement for Dye-sensitized Solar Cell with TiCl4 Treatment and Modified the Counter Electrode with Al Reflector |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 染料敏化太陽能電池 、四氯化鈦處理 、光散射 、對電極 、高反射 |
外文關鍵詞: | Dye-sensitized solar cell, TiCl4 treatment, light scattering, counter electrode, high reflective |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由結合四氯化鈦處理多孔性二氧化鈦光電極以及新穎的高反射性對電極Pt/FTO/Al於染料敏化太陽能電池中來提升太陽電池的光電特性。實驗結果指出入射光會被四氯化鈦處理後得到的大粒徑二氧化鈦顆粒散射以及因高反射特性的對電極反射而進一步有效吸收光源。因此,相較於不經任何處理的標準電池而言,可以有效抑制光對電池元件的穿透情形。此外,經過改良的電池相較於標準電池在短路電流密度上提升34%,並且得到5.62%的光電轉換效率。在第二部份中,我們藉由四氯化鈦處理來改善二氧化鈦顆粒間的連結特性以及濺鍍鈦金屬薄膜於染料敏化太陽電池的導電玻璃來改善導電玻璃與多孔性二氧化鈦光電極的介面電阻,進而有效抑制電子與染料、電解液發生逆向複合的情形。實驗結果得出經過處理後的電池相較於標準電池在短路電流密度上提升42%,並且得到6.13%的光電轉換效率。此外,為讓太陽電池可廣泛應用,發展可撓式染料敏化太陽電池是必要的。我們以 PET-ITO基板做為光電極基板,利用不鏽鋼板做為對電極基板,成功製成可撓式染料敏化太陽電池,其光電轉換效率可達 2.27%。
This thesis attempts to enhance the performance of dye-sensitized solar cells (DSSCs) by integrating the TiCl4 treatment on porous TiO2 and a novel high-reflective counter electrode, Pt/FTO/Al. Experimental results indicate that light scattered by TiCl4-treated large TiO2 particle sizes and light reflected by the counter electrode decrease the total transmission of the modified cell. Additionally, the modified DSSCs significantly increase the short-circuit photocurrent density (Jsc) by about 34% higher than that of the standard cell, resulting in about 42% higher than that of a standard cell. In the next study, we focus on the DSSCs with the TiCl4 treatment and the Ti-deposited thin film metal on FTO of the enhancement of collection efficiency to improve cells. The modified DSSCs give the significantly improvement of the short-circuit photocurrent density (Jsc) about 42% greater than that of the standard cell, and resulting in a 6.13% energy conversion efficiency. Finally, we had fabricated a flexible DSSC, the substrate of photoelectrode was PET-ITO, and the substrate of counter electrode, and the conversion efficiency of flexible DSSC was 2.27%.
Chapter 1
[1-1] BP, Statistical Review of World Energy, June (2006).
[1-2] Martin A. Green, Very High Efficiency Silicon Solar Cells—Science and Technology, IEEE Transaction On Electron Devices, vol. 46, no. 10, (1999).
[1-3] Energy Information Administration, International Energy Outlook 2006, June (2006).
[1-4] Gr□tzel, M. Nature 414, 338 (2001).
[1-5] Becquerel, A.E.C.R. Acad. Sci. Paris 9, 561 (1839).
[1-6] Gr□tzel, M.,“Powering the planet ”, Nature 403, 363 (2000).
[1-7] Luque, A. IEEE International Symposium on Industrial Electronics, Vigo, Spain, (2007).
[1-8] J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
[1-9] Martin A. Green1, Keith Emery, Yoshihiro Hishikawa and Wilhelm Warta, “Solar Cell Efficiency Tables (Version 31)”, Prog. Photovolt: Res. Appl.; 16:61–67 (2008).
[1-10] B. O’Regan and M.Gr□tzel,“A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,”Nature 353, 737 (1991)
Chapter 2
[2-1] Kearns et al., J. Am. Chem. Soc. 89, 5456 (1967).
[2-2] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya,“Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell,” Nature 261, 402 (1976).
[2-3] Nazeeruddin M.K., Pechy P., Gr□tzel M.,“Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato–ruthenium comple,” Chem. Commun., 1705 (1997).
[2-4] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, and M. Tachiya, J. Phys. Chem. B 108, 4818 (2004).
[2-5] A. Fujishima et al.,“Slow interfacial charge recombination in solid-state dye-sensitized solar cell using Al2O3-coated nanoporous TiO2 films,” Sol. Energy Mater. Sol. Cells 81, 197 (2004).
[2-6] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, M. Gratzel, Inog. Chem. 38, 6298 (1999).
[2-7] Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Gr□tzel,“Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell,” J. Phys. Chem. B 107, 8981 (2003).
[2-8] Hara K et al.,“Influence of electrolytes on the photovoltaic performance of organic dye-sensitized nanocrystalline TiO2 solar cells,” Sol. Energy Mater. Sol. Cells 70, 151 (2001).
[2-9] A. Zaban, J. Zhang, Y. Diamant, O. Melemed, and J. Bisquert,“Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations,” J. Phys. Chem. B 107, 6022 (2003).
[2-10] Martine a. Green,“Solar cells”, Prentice Hall, (2003).
Chapter 3
[3-1] J. Ferber, J. Luther,“Computer simulations of light scattering and absorption in dye-sensitized solar cells,”Sol. Energy Mater. Sol. Cells 54, 265 (1998).
[3-2] A. Usami,“Theoretical simulations of optical confinement in dye-sensitized nanocrystalline solar cells,”Sol. Energy Mater. Sol. Cells 64, 73 (2000).
[3-3] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa,“Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell,” Coord. Chem. Rev. 248, 1381 (2004).
[3-4] J.-K. Lee, B.-H. Jeong, S.-I. Jang, Y.-G. Kim, Y.-W. Jang, S.-B. Lee, M.-R. Kim,“Preparations of TiO2 pastes and its application to light-scattering layer for dye-sensitized solar cells,” J. Ind. Eng. Chem. 15, 724 (2009).
[3-5] S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch,“Influence of scattering layers on efficiency of dye-sensitized solar cells,” Sol. Energy Mater. Sol. Cells 90, 1176 (2006).
[3-6] Z. Tian, H. Tian, X. Wang, S. Yuan, J. Zhang, X. Zhang, T. Yu, and Z. Zou,“Multilayer structure with gradual increasing porosity for dye-sensitized solar cells,” Appl. Phys. Lett. 94, 031905 (2009).
[3-7] G. Wang, Y. Lin,“Novel counter electrodes based on NiP-plated glass and Ti plate substrate for dye-sensitized solar cells,” J Mater Sci 42, 5281 (2007).
[3-8] H. Wang, Y. Liu, H. Huang, M. Zhong, H. Shen, Y. Wang, and H. Yang,“Low resistance dye-sensitized solar cells based on all-titanium substrates using wires and sheets,” Appl. Surf. Sci. 255, 9020 (2009).
[3-9] T. Ma, X. Fang, M. Akiyama, K. Inoue,H. Noma, and E. Abe,“Properties of several types of novel counter electrodes for dye-sensitized solar cells,” J. Electroanal. Chem. 574, 77 (2004).
[3-10] M.-Y. Song, D.-K. Kim, S.-M. Jo, and D.-Y. Kim,“Enhancement of the photocurrent generation in dye-sensitized solar cell based on electrospun TiO2 electrode by surface treatment,” Synth. Met. 155, 635 (2005).
[3-11] P. M. Sommeling, B. C. O’Regan, R. R. Haswell, H. J. P. Smit, N. J. Bakker, J. J. T. Smits, J. M. Kroon, and J. A. M. van Roosmalen,“Influence of a TiCl4 Post-Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 19191 (2006).
[3-12] N. Fuke, R. Katoh, A. Islam, M. Kasuya, A. Furube, A. Fukui, Y. Chiba, R. Komiya, R. Yamanaka, L. Han, and H. Harimac,“Influence of TiCl4 treatment on back contact dye-sensitized solar cells sensitized with black dye,” Energy Environ. Sci. 2, 1205 (2009).
[3-13] M.K. Nazeeruddin, P. Pechy, T. Renouard, S.M. Zakeeruddin, R Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C.A. Bignozzi, M. Gratzel,“Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem.Soc. 123, 1613 (2001).
[3-14] K.Hara, H. Sugihhara,Y. Tachibana, A. Islam, M. Yanagida, K. Sayama, and H. Arakawa,“Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers,” Langmuir 17, 5992 (2001).
Chapter 4
[4-1] Cao F, Oskam G, Meyer G, Searson P,“Electron Transport in Porous Nanocrystalline TiO2 Photoelectrochemical Cells,” J. Phys. Chem. B 100, 17021 (1996).
[4-2] Solbrand A et al.,“Electron transport in the nanostructured TiO2-electrolyte system studied with time-resolved photocurrents,” J. Phys. Chem. B 101, 2514 (1997).
[4-3] Petra J. Cameron and Laurence M. Peter,“Characterization of Titanium Dioxide Blocking Layers in Dye-Sensitized Nanocrystalline Solar Cells,” J. Phys. Chem. B 107, 14394 (2003).
[4-4] Jiangbin Xia, Naruhiko Masaki, Kejian Jiang, and Shozo Yanagida,“Deposition of a Thin Film of TiOx from a Titanium Metal Target as Novel Blocking Layers at Conducting Glass/TiO2 Interfaces in Ionic Liquid Mesoscopic TiO2 Dye-Sensitized Solar Cells,” J. Phys. Chem. B 110, 25222 (2006).
[4-5] S. H. Seo, H. J. Kim, B. K. Koo, D. Y. Lee,“Effects of Non-Noble Metal Current-Collecting Grids on Internal Resistance for Dye-Sensitized Solar Cells,” J. Electrochem. Soc. 156, (10) 128(2009).
[4-6] J. Kr□ger, R. Plass, L. Cevey, M. Piccirelli, M. Gr□tzel,“High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination,” Appl. Phys. Lett. 79, 2085 (2001).
[4-7] H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M.A. Fox, M. Anpo,“Photocatalytic Degradation of 1-Octanol on Anchored Titanium Oxide and on TiO2Powder Catalysts,” J. Catal. 158, 97 (1996).
[4-8] B. C. O’Regan, J. R. Durrant, P. M. Sommeling, N. J. Bakker,“Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit,” J. Phys. Chem. C 111, 14001 (2007).
[4-9] Chien-Ting Chen, Study of Dye-sensitized Solar Cell with Sputtered Various Metallic Thin Film on Photoelectrode, Institute of Engineering and System Science, National Tsing Hua University. 2009.
[4-10] A. Andersson, N. Johansson, P. BrGms, N. Yu, D. Lupo, and W. R. Salaneck, Adv. Mater. 10, 859 (1998).
[4-11] Amy L. Linsebigler, Guangquan Lu, John T. Yates, Chem. Rev. 95, 735 (1995).
Chapter 5
[5-1] S. Uchida, S. Akita, Y. Sanehira, T. Kubo, H. Segawa, Low temperature sinetering of nano TiO2 film for plastic dye-sensitized solar cells.
[5-2] D. Zhang, T.Yoshida, T. Oekermann, K. Furuta, H. Minoura,“Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface,” Adv. Mater. 15, 814 (2003).
[5-3] H. Lindstr□m, A. Hormberg, E. Magnusson, L. Malmqvist, A. Hagfeldt,“A new method to make dye-sensitized nanocrystalline solar cells at room temperature,” J. Photochem. Photobiol. A 145, 107 (2001).
[5-4] T. Miyasaka, Y. Kijitoril, T. N. Murakami, M. Kimura, S. Uegusa,“Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers,” Chem. Lett. 31, 1250 (2002).
[5-5] T.N. Murakami, Y. Kijitori, N. Kawashima, T. Miyasaka,“Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation,” J. Photochem. Photobiol. A 164, 187 (2004).
[5-6] T. Kado, M. Yamaguchi, Y. Yamada, S. Hayase,“Low temperature preparation of nano-porous TiO2 layers for plastic dye sensitized solar cells,” Chem. Lett. 32, 1056 (2003).
[5-7] T. Miyasaka, M. Ikegami, Y. Kijitori,“Photovoltaic performance of plastic dye-sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania” J. Electrochem. Soc. 154 (5), A455 (2007).
[5-8] A. D. Pasquier, M. Stewart, T. Spitler, M. Coleman,“Aqueous coating of efficient flexible TiO2 dye solar cell photoanodes,” Sol. Energy Mater. Sol. Cells 93, 528 (2009).
[5-9] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim,“A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate” Sol. Energy Mater. Sol. Cells 90, 574 (2006).
[5-10] J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee, M. G. Kang,“Fabrication of an efficient dye-sensitized solar cell with stainless steel substrate,” J. Electrochem. Soc. 155 (7), F145 (2008).
[5-11] M. G. Kang, N.-G. Park, K. S. Ryu, S. H. Chang, K.-J. Kim,“Flexible Metallic Substrates for TiO2 Film of Dye-sensitized Solar Cells,”Chem. Lett. 34, 6 (2005).
[5-12] H. Qiu, Y.-F. Lu, Z.-H, Mai,“Nanostructure formation on amorphous WO3 thin films in air by scanning tunneling microscopy,” Jpn. J. Appl. Phys. 40, 290 (2001).