簡易檢索 / 詳目顯示

研究生: 吳庭瑋
Wu, Ting-Wei
論文名稱: 利用三光布拉格表面繞射研究SiGe/Si界面應力變化
Study of Probing Interfacial Strains in SiGe/Si Using Three-Beam Bragg-Surface Diffraction
指導教授: 張石麟
Chang, Shih-Lin
口試委員: 黃玉山
蘇雲良
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: 應力變化界面應變三光布拉格表面繞射矽鍺
外文關鍵詞: Strain, Interfacial strain, X-ray Three-Beam Bragg-Surface Diffraction, germanium silicide, silicon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在半導體的製程中,界面應變(Interfacial strain)是改變元件特性的關鍵,因此,本實驗主要運用X光三光布拉格表面繞射(X-ray Three-Beam Bragg-Surface Diffraction,BSD)實驗方法,以入射X光同時激發矽(Si)基板與矽鍺(SiGe)薄膜之繞射光,藉由收取的矽基板與矽鍺薄膜之二階繞射光來分析界面應變,以便更清楚了解元件的特性。
    本實驗所使用的入射X光能量為12KeV,於國家同步輻射研究中心(National Synchrotron Radiation Research Center,NSRRC)光速線BL17B1來進行實驗。首先進行掠角繞射與布拉格繞射來研究SiGe/Si樣品的晶體品質;再來進行三光布拉格表面繞射實驗來研究SiGe/Si在不同薄膜厚度的界面應變。此處三光分別代表入射光、一階繞射光與二階繞射光,而二階繞射光波向量會沿著晶體表面行進,故又稱為二階表面繞射光。
    實驗使用的樣品為SiGe薄膜成長於[0 0 1]方向的六吋Si基板上,薄膜矽鍺比例為Si0.8Ge0.2。此樣品是委託國家奈米實驗室 (NDL) 使用分子磊晶(MBE)製程製作,SiGe薄膜厚度為59.90、47.58、28.72、23.23nm。實驗分析結果發現,薄膜厚度較厚時,薄膜垂直晶軸的應變較大,且薄膜厚度與應變大小存在一線性關係y = 0.012x + 0.9986,其中x為薄膜厚度、y為應變。因此可推測當薄膜厚度越厚,它的彈性應變能也會增大,在到達薄膜臨界厚度h_c之前,薄膜垂直晶軸的應變也會越大。


    ABSTRACT
    Study of Probing Interfacial Strains in SiGe/Si
    Using Three-Beam Bragg-Surface Diffraction
    Ting-Wei Wu, Advisor : Professor Shih-Lin Chang
    Master of Physics,
    National Tsing Hua University, Hsin-Chu, Taiwan

    In the manufacturing process of semiconductor, interface strains play an important role in changing the device characteristics. In order to understand more clearly the characteristics of the device, we study of probing interfacial strains in SiGe/Si sample using Three-Beam Bragg-Surface Diffraction(BSD).
    The experiment was performed on BL17B1 beam line in the National Synchrotron Radiation Research Center(NSRRC). The energy of incident X-rays used is 12KeV. First of all, we study crystalline quality of SiGe / Si samples using grazing incidence X-ray diffraction and Bragg’s diffraction. Afterwards, we study interfacial strains of SiGe / Si samples at different thickness of film using Three-Beam Bragg-Surface Diffraction(BSD).
    The sample is a germanium silicide film grown on a silicon substrate, where the SiGe film is about 59.90、47.58、28.72、23.23nm thick, which was manufactured by National Nano Device Laboratory(NDL). The experimental analysis found that when the thickness of the germanium silicide film becomes thicker and before reaching the critical thickness of film, the interfacial strains along the c-axis gets strong.

    目 錄 中文摘要………………………………………………………………………………I 英文摘要……………………………………………………………………………...II 誌謝……...…………………………………………………………………………..III 目錄………...………………………………………………………………………..IV 圖表目錄……………………………………………………………………………...V 第一章 緒論…………………………………………………………………………..1 第二章 實驗樣品製備………………………………………………………………..2 2.1樣品材料介紹……………………………………………………………2 2.2樣品檢驗…………………………………………………………………4 第三章 實驗原理與分析方法………………………………………………………..9 3.1三光布拉格表面繞射……………………………………………………9 3.2晶格常數分析方法……………………………………………………..17 3.3 X光掠角繞射…………………………………………………………..22 第四章 理論介紹…………………………………………………………………....23 4.1基本波場方程式………………………………………………………..23 4.2波場分佈………………………………………………………………..26 4.3邊界條件………………………………………………………………..31 第五章 實驗設置……………………………………………………………………33 5.1光源、儀器介紹………………………………………………………..33 5.2實驗步驟與方法………………………………………………………..34 第六章 實驗結果與數據分析………………………………………………………40 6.1掠角繞射與布拉格繞射實驗…………………………………………..40 6.2三光布拉格表面繞射實驗……………………………………………..43 6.2.1實驗二階表面繞射光反射面選取與實驗數據圖……………….43 6.2.2二階表面繞射光修正…………………………………………….53 6.2.3入射光修正……………………………………………………….59 6.2.4不同薄膜厚度之三光布拉格表面繞射實驗結果……………….63 6.2.5薄膜振盪分析…………………………………………………….70 第七章 結論與未來展望……………………………………………………………76 7.1結論……………………………………………………………………..76 7.2未來展望………………………………………………………………..77 參考文獻……………………………………………………………………………..78 附錄 誤差估算………………………………………………………………………79

    [1]. S.-L. Chang, ‘‘X-ray multiple-wave diffraction : theory and Applications’’, Springer, Berlin (2004).
    [2]. M.-S. Chiu, ‘‘Dynamical calculation for X-ray 24-beam diffraction in a Fabry-Perot cavity of silicon’’, Doctor’s thesis, NTHU (2008).
    [3]. Y.-T. Ye, ‘‘Investigation of Probing E-Field inside the thin-film ZnO on Al2O3 Substrate Using X-ray Multiple Diffraction’’, Master’s thesis, NTHU (2013).
    [4]. J.-H. Yan, ‘‘Study of Probing Interfacial Strains in ZnO/Al2O3 Using Multi-Beam X-ray Diffraction’’, Master’s thesis, NTHU (2014).
    [5]. Yu. P. Stetsko, and S.-L. Chang, ‘‘An Algorithm for Solving Multiple-Wave Dynamical X-ray Diffraction Equations’’, Acta Cryst. A53, 28-34 (1997).
    [6]. G.-P. Zheng, ‘‘The Research of Optical Thin Film in the X-Ray Region’’,
    Master’s thesis, NCU (2002).
    [7]. Andrew J. Ying, Conal E. Murray, and I. C. Noyan, ’’A rigorous comparison of
    X-ray diffraction thickness measurement techniques using silicon-on-insulator thin films’’, J. Appl. Cryst. 42, 401-410 (2009).
    [8]. J. W. Matthews, ‘‘Defects associated with the accommodation of misfit between crystals’’, Journal of Vacuum Science and Technology vol. 12, 126 (1975).
    [9]. R. People, and J. C. Bean, ‘‘Calculation of critical layer thickness versus lattice mismatch for GexSi1−x/Si strained‐layer heterostructure’’, Appl. Phys. Lett. 47, 322 (1985).
    [10]. 羅廣禮, ‘‘矽鍺半導體材料的物理特性與成長技術 ’’, 電子月刊第十五卷
    第三期 (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE