簡易檢索 / 詳目顯示

研究生: 林韋任
Lin, Wei-Ren
論文名稱: 中斷限制下無線感知電中繼網路之機率功率分配
Probabilistic Power Allocation For Cognitive Relay Networks with Outage Constraints
指導教授: 林澤
Lin, Che
口試委員: 蔡育仁
Yuh-Ren Tsai
鄭傑
Jay Cheng
陸曉峯
Francis Lu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 70
中文關鍵詞: 合作式無線感知電中繼網路全工模式解碼前送機率功率分配凸優化
外文關鍵詞: Cooperative cognitive radio, relay networks, full-duplex, decode-and-forward, probabilistic power allocation, convex optimization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇論文中,我們探討在塊狀衰減通道下N個主用戶(primary user)和N個次用戶(secondary user)及在N個次中繼站(secondary relay)的幫助下的頻譜共享式感知無線電中繼協助網路。我們考慮每個中繼站只服務特定的使用者或可以服務所有的使用者兩種應用情境。在兩種應用情境中,我們假設中繼站都以全雙工(full-duplex)及解碼前送(decode-and-forward)的協定方式運作。我們假設主要系統的傳送端只有本地通道資訊而次要系統的傳送端有完整的通道資訊(channel state information)。由這些假設,我們研究當使用機率功率分配(probabilistic power allocation)時在干擾功率(interference power),次要用戶之中斷機率(outage probability)及功率限制下最大化次要用戶之系統效能。為了解決這個問題的非凸優性(non-convex),我們使用凸一階近似(convex first-order approximation)方法。此外,藉由連續凸近似(successive convex approximation),我們提出ㄧ個經由解凸優化問題的演算法並且有很高效能的近似解。另外,為了證明此近似解為原本問題之靜止點(stationary point),我們提出了一個次最佳的問題並驗證了此收斂證明。我們的模擬結果顯示出我們所提出的演算法在兩個應用情境中都能達到卓越的效能(superior performance)。我們也做了更多的模擬結果來探討雙工模式以及兩個應用情境的權衡關係。


    In this thesis, we study a spectrum sharing based cognitive relay-assisted network (CRAN) where $N$ secondary users (SUs) share the same spectrum with a primary user (PU) over block fading channels with the aid of \( N \) secondary relays (SRs). We considered two scenarios where each relay can only serve a particular SU or can be shared by all SUs.
    both scenarios are operated in full-duplex (FD) mode and decode-and forward (DF) protocol is employed.
    We assume complete perfect channel state information (CSI) at the secondary transmitters (or secondary sources) and relay transmitters while only local instantaneous CSI is assumed at the primary transmitter. Based on these assumptions, we investigate the optimal probabilistic power allocation that seeks to maximize the system utilities for SUs subject to the primary interference power constraint, and the secondary rate outage constraints and the individual power constraints.
    To handle the non-convex constraints in the resulting optimization problem, we applied conservative convex first-order approximation techniques. Furthermore, by the successive convex approximation (SCA), we proposed an algorithm that provides high-quality approximate solutions via solving a sequence of convex approximation problems.
    To demonstrate that the limit point generated by our proposed SCA algorithm is indeed a stationary point of the optimization problem before applying convex approximation, we proposed a suboptimal scheme and verified the convergence proof.
    Extensive simulations validated our analyses and demonstrated that superior performance is indeed achieved by both our proposed algorithms, where the achieved utilities are close to the optimum.
    Further simulations results revealed the trade-off between duplex modes and two scenarios.

    1.Introduction 2 Relay-Dedicated CRAN 3 Convex Approximation Method 4 Relay-sharing CRAN 5 Convergence Analysis of SCA Algorithm 6 Simulation Results 7 Conclusion Appendix Bibliography

    [1] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum gridlock with cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, no. 5, pp. 894–914, May 2009.
    [2] S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE J. Sel. Areas Commun., vol. 23, no. 2, pp. 201–220, Feb. 2005.
    [3] X. Zhang, J. Xing, Z. Yan, Y. Gao, and W. Wang, “Outage performance study of cognitive relay networks with imperfect channel knowledge,” IEEE Communications Letters, vol. 17, no. 1, pp. 27–30, 2013.
    [4] D. B. da Costa, M. Elkashlan, P. L. Yeoh, N. Yang, and M. D. Yacoub, “Dual-hop coopera- tive spectrum sharing systems with multi-primary users and multi-secondary destinations over nakagami-m fading,” 2012 IEEE 23rd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), p. 15771581, 2012.
    [5] J. Lee, H. Wang, J. G. Andrews, and D. Hong, “Outage probability of cognitive relay networks with interference constraints,” IEEE Trans. Wireless Commun., vol. 10, no. 2, pp. 390–395, 2011.
    [6] T.Q.Duong,P.L.Yeoh,V.N.Q.Bao,M.Elkashlan,andN.Yang,“Cognitiverelaynetworkswith multiple primary transceivers under spectrum-sharing,” Signal Processing Letters, IEEE, vol. 19, no. 11, p. 741744, 2012.
    [7] Z. Wei, Y. Xie, R. Li, and Q. Zhang, “Outage performance of cognitive relay networks with primary user’s isr constraint,” presented at the Vehicular Technology Conference (VTC Fall), pp. 1–6, 2012.
    [8] A. B. Saleh, S. Redana, B. Raaf, T. Riihonen, J. Hamalainen, and R. Wichman, “Performance of amplify-and-forward and decode-and-forward relays in lte-advanced,” presented at the Vehicular Technology Conference Fall (VTC 2009-Fall), pp. 1–5, 2009.
    [9] T. Riihonen, S. Werner, and R. Wichman, “Mitigation of loopback self-interference in full-duplex mimo relays,” IEEE Trans. Signal Process., vol. 59, no. 12, pp. 5983–5993, 2011.
    [10] B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter, “Full-duplex bidirectional mimo: achiev- able rates under limited dynamic range,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3702– 3713, July 2012.
    [11] Y. Hua, “An overview of beamforming and power allocation for mimo relays,” Proc. IEEE Mili- tary Commun. Conf, pp. 375–380, 2010.
    [12] T. Riihonen, S. Werner, R. Wichman, and E. Z. B., “On the feasibility of full-duplex relaying in the presence of loop interference,” Proc. IEEE Workshop Signal Process. Advances Wireless Commun., pp. 275–279, 2009.
    [13] M. Duarte and A. Sabharwal, “Full-duplex wireless communications using off-the-shelf radios: feasibility and first results,” in Proc. Asilomar Conf. Signals, Syst., Comput., pp. 1558–1562, 2010.
    [14] G. Zheng, I. Krikidis, and B. Ottersten, “Full-duplex cooperative cognitive radio with transmit imperfections,” IEEE Trans. Wireless Commun., vol. 12, no. 5, pp. 2498–2511, 2013.
    [15] Z. Chang and T. Ristaniemi, “Resource allocation for cooperative relay-assisted ofdma networks with imperfect csi,” presented at the MILITARY COMMUNICATIONS CONFERENCE, pp. 1–6, 2012.
    [16] W. Yue, B. Zheng, and Q. Meng, “Optimal power control for cognitive relay networks over fading channels,” presented at the Future Networks, 2010. ICFN ’10. Second International Conference, pp. 281–285, 2010.
    [17] V. K. Y. Wu, Y. G. Li, M. P. Wylie-Green, T. Reid, and P. S. S. Wang, “Power allocation for ofdm-based cooperative relay systems,” Journal of Communications and Networks, vol. 10, no. 2, pp. 156–162, 2008.
    [18] X. Jiang and J. Lu, “Power minimization for cognitive relay networks with interference-based strategy,” IEEE Communications Letters, vol. 17, no. 10, pp. 1936–1939, 2013.
    [19] G. A. S. Sidhu, F. Gao, W. Wang, and W. Chen, “Resource allocation in relay-aided ofdm cogni- tive radio networks,” IEEE Trans. Vehicular Technology, vol. 62, no. 8, pp. 3700–3710, 2013.
    [20] D.Bharadia,G.Bansal,P.Kaligineedi,andV.K.Bhargava,“Relayandpowerallocationschemes for ofdm-based cognitive radio systems,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 2812–2817, 2011.
    [21] T. Yi, L. Guo, and J. Lin, “Outage probability of cognitive relay network with transmit power and interference constraints,” 2012 15th International Symposium on Wireless Personal Multimedia Communications (WPMC), vol. 47, pp. 133–137, 2012.
    [22] H. Kim, S. Lim, H. Wang, and D. Hong, “Optimal power allocation and outage analysis for cognitive full duplex relay systems,” IEEE Trans. Wireless Commun., vol. 11, no. 10, pp. 3754– 3765, 2012.
    [23] G.Caire,G.Taricco,andE.Biglieri,“Optimumpowercontroloverfadingchannels,”IEEETrans. Inf. Theory, vol. 45, no. 5, pp. 1468–1489, July 1999.
    [24] J. Luo, R. Yates, and P. Spasojevic, “Service outage based power and rate allocation for parallel fading channels,” IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2594–2611, July 2005.
    [25] A. Limmanee, S. Dey, and J. Evans, “Service-outage capacity maximization in cognitive radio,” 2011 IEEE International Conference on Communication, pp. 1–6, 2011.
    [26] ——, “Service-outage capacity maximization in cognitive radio for parallel fading channels,” IEEE Trans. Commun., vol. 61, no. 2, pp. 507–520, Feb. 2013.
    [27] T. M. Cover and A. A. E. Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inf. Theory, vol. IT-25, no. 5, pp. 572–584, Sep 1979.
    [28] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037–3063, Sep 2005.
    [29] S. Rini, D. Tuninetti, N. Devroye, and A. J. Goldsmith, “On the capacity of the interference channel with a cognitive relay,” IEEE Trans. Inform. Theory, vol. 60, no. 4, pp. 2148–2179, 2014.
    [30] A. Jovicic and P. Viswanath, “Cognitive radio: An information-theoretic perspective,” IEEE Trans. Inform. Theory, vol. 55, no. 9, pp. 3945–3958, 2009.
    [31] J. Mo and J. Walrand, “Fair end-to-end window-based congestion control,” IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556–567, Oct. 2000.
    [32] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex programing , version 2.0,” http://cvxr.com/cvx, Apr. 2011.
    [33] W.-C.Li,T.-H.Chang,C.Lin,andC.-Y.Chi,“Aconvexapproximationapproachtoweightedsum rate maximization of multiuser MISO interference channel under outage constraints,” in Proc. IEEE ICASSP, May 22-27, 2011, pp. 3368–3371.
    [34] ——, “Coordinated beamforming for multiuser MISO interference channel under rate outage constraints,” IEEE Trans. Signal Process., vol. 61, no. 5, pp. 1087–1103, 2013.
    [35] J. Cook, “Basic properties of the soft maximum,” MD Anderson Biostatistics, pp. 1–4, 2011.
    [36] B. R. Marks and G. P. Wright, “A general inner approximation algorithm for nonconvex mathe-
    matical programs,” Operations Research, vol. 26, no. 4, pp. 681–683, 1978.
    [37] D. P. Bertsekas, A. Nedi ́c, and A. E. Ozdaglar, Convex Analysis and Optimization. Cambridge,
    Massachusetts: Athena Scientific, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE