研究生: |
林展民 |
---|---|
論文名稱: |
雙鎢金屬多重鍵化合物之合成及其反應性研究 Synthesis and Reactivity of Multiply-Bonded Ditungsten Complexes |
指導教授: | 蔡易州 |
口試委員: |
黃賢達
王朝諺 蔡易州 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 105 |
中文關鍵詞: | 雙鎢金屬多重鍵 |
外文關鍵詞: | Multiply-Bonded Ditungsten Complexes |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
化合物[Li(THF)4]{W2Cl4[μ-η2-HC(N-2,6-iPr2C6H3)2]2} (1a)與碘化鉀及18-crown-6 ether (冠狀醚)進行陽離子交換可得到化合物
[K(18-c-6)]{W2Cl4[μ-η2-HC(N-2,6-iPr2C6H3)2]2} (2),將化合物2以KC8進一步還原可得一進行甲基的碳-氫鍵氧化加成反應且有兩個鉀原子橋接在雙鎢(II)間的金屬四重鍵化合物W2H2[μ-K(OEt2)]2[μ-η2-HC(N-
2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (3)。將化合物3與四氫呋喃反應可得到同樣進行甲基的碳-氫鍵氧化加成反應且有兩個氫原子橋接在雙鎢(III)間的金屬三重鍵化合物W2(μ-H)2(THF)[μ-η2-HC
(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (1e)。而用KC8可將化合物1e還原成化合物3,兩者間為可逆的。
化合物1e和3與兩當量的2,4,6-三甲基苯甲腈反應,皆可得到W2(μ-H)2[1-NC(Mes)]2[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (4),其苯甲腈以氮原子配位至鎢金屬上。化合物1e和3與兩當量的二苯基鋅反應,皆可得到W2H2[μ-ZnC6H5]2[μ-η2-HC(N-
2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (5),其苯基鋅以架橋形式配位至雙鎢金屬間。化合物3與二乙基氯化鋁反應,可得到
[K(OEt2)4]W2H2(μ-AlEt2)[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-
CH2)CH3-C6H3)]2 (6),其二乙基鋁與鉀進行陽離子置換,以架橋形式配位至雙鎢金屬間。
將WCl4(DME)與兩當量雙氮基脒配基Li[HC(N-2,6-Et2C6H3)2]反應不同時間,可得到順磁性鎢(IV)化合物W[η3-Cl2Li(OEt2)N(2,6-Et2C6
H3)C(H)N(2,6-Et2C6H3)]2 (7)及順磁性鎢(IV)化合物WCl2[η2-HC(N-
2,6-Et2C6H3)2]2 (8),化合物7脫去兩分子的LiCl,而形成化合物8。將化合物8與一當量的WCl4(DME)反應,可得到順磁性鎢(V)化合物WCl3[η2-HC(N-2,6-Et2C6H3)2]2 (9)。將WCl3(DME)與一當量雙氮基脒配基Li[HC(N-2,6-Et2C6H3)2]2反應,可得到一具有氧原子橋接在雙鎢金屬間的W2Cl2(μ-O)(μ-Cl) [η2-ClLi(OEt2)2Cl][η2-HC(N-2,6-Et2C6H3)2]
[μ-η2-HC(N-2,6-Et2C6H3)2] (10),將化合物10進一步還原可得到W2(μ-Cl)(μ-CH)(1-N-2,6-Et2C6H3)2[η2-HC(N-2,6-Et2C6H3)2]2 (11)及W4(μ-Cl)4[μ-η2-HC(N-2,6-Et2C6H3)2]4 (12),化合物11將一分子的雙氮基脒配基進行三原子六電子的切割反應,methylidyne橋接於雙鎢金屬間,兩個imido以terminal的形式配位至鎢金屬上。化合物12為四個鎢(II)金屬以四個氯原子橋接的四重鍵化合物。將化合物10與一當量的雙氮基脒配基Li[HC(N-2,6-Et2C6H3)2]2反應,可得到W2Cl2
(μ-O)(μ-Cl)[η2-HC(N-2,6-Et2C6H3)2]2[μ-η2-HC(N-2,6-Et2C6H3)2] (13),將化合物13進一步還原可得W2[μ-O(KOEt2)](μ-CH)(1-N-2,6-Et2C6H3)2
[η2-HC(N-2,6-Et2C6H3)2]2 (14),化合物14與化合物11同樣將雙氮基脒配基進行三原子六電子的切割反應,形成methylidyne的化合物。
The cation exchange between [Li(THF)4]{W2Cl4[μ-η2-HC(N-2,6-iPr2
C6H3)2]2} (1a) and KI in the presence of 18-crown-6 ether affords [K(18-c-6)]{W2Cl4[μ-η2-HC(N-2,6-iPr2C6H3)2]2} (2). Subsequent reduction of 2 gives the quadruply-bonded ditungsten(II) complex W2H2[μ-K(OEt2)]2[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (3), which is arisen from double intramolecular C-H bond activation and features two potassium counter-cations. Dissolution of 2 in THF affords W2(μ-H)2(THF)[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1
-CH2)CH3-C6H3)]2 (1e), which displays a gem conformation with two hydrido ligands unsymmetrically bridging two tungsten centers. Complexes 1e and 3 are chemically interconvertible. Reduction of 1e by KC8 gives back to 3.
Treatment of 1e or 3 with 2 equiv of mesityl nitrile yields W2(μ-H)2 [1-NC(Mes)]2[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3
-C6H3)]2 (4), where the nitrogen donor atom of mesityl nitrile coordinates tungsten centers. Reaction of 1e or 3 with 2 equiv of diphenylzinc generates the hetero tetranuclear complex W2H2[μ-ZnC6H5]2[μ-η2-HC(N-
2,6-iPr2C6H3)(N-2-iPr2-6-CH(1-CH2)CH3-C6H3)]2 (5), whereby phenyl zinc bridges two tungsten atoms. Addition of 1 equiv of AlEt2Cl to 3 yields [K(OEt2)4]W2H2(μ-AlEt2)[μ-η2-HC(N-2,6-iPr2C6H3)(N-2-iPr2-6-CH
(1-CH2)CH3-C6H3)]2 (6), whereby diethyl aluminum group bridges two tungsten centers.
Reactions of WCl4(DME) with 2 equiv of lithiated amidinate Li[HC(N-2,6-Et2C6H3)2] in different time periods afford two mononuclear complexes W[η3-Cl2Li(OEt2)N(2,6-Et2C6H3)C(H)N(2,6-
Et2C6H3)]2 (7) and WCl2[η2-HC(N-2,6-Et2C6H3)2]2 (8). Complex 8 can be thought of LiCl extrusion from 7. Upon treatment of 8 with 1 equiv of WCl4(DME), the mononuclear penta-valent tungsten complex WCl3[η2-
HC(N-2,6-Et2C6H3)2]2 (9) is obtained.
On the other hand, the reaction of WCl3(DME) with 1 equiv of Li[HC(N-2,6-Et2C6H3)2] affords the dinuclear “-ate” complex W2Cl2
(μ-O)(μ-Cl)[η2-ClLi(OEt2)2Cl][η2-HC(N-2,6-Et2C6H3)2] [μ-η2-HC(N-
2,6-Et2C6H3)2] (10), which features an oxygen atom bridging two tungsten centers. Subsequent reduction of 10 gives the methylidyne complex W2(μ-Cl)(μ-CH)(1-N-2,6-Et2C6H3)2[η2-HC(N-2,6-Et2C6H3)2]2
(11) and the tetranuclear complex W4(μ-Cl)4[μ-η2-HC(N-2,6-Et2C6H3)2]4 (12). Complex 11 is formed through a three-atom 6e reductive cleavage of the amidinate to give a bis-terminal imido and bridging methylidyne ditungsten complex. Complex 12 is the quadruply-bonded complex, which has four tungsten(II) centers with four chloride atoms bridging to the tungsten centers. Further reaction of 10 with 1 equiv of Li[HC(N-2,6-Et2C6H3)2] affords W2Cl2(μ-O)(μ-Cl)[η2-HC(N-2,6-Et2C6
H3)2]2[μ-η2-HC(N-2,6-Et2C6H3)2] (13). Subsequent reduction of 13 also induces the cleavage of the amidinato ligand to give the methylidyne complex W2[μ-O(KOEt2)](μ-CH)(1-N-2,6-Et2C6H3)2[η2-HC(N-2,6-Et2
C6H3)2]2 (14).
1. Kauffman, G. B. Coord. Chem. Rev. 1973, 9, 339.
2. Kauffman, G. B. Coord. Chem. Rev. 1974, 12, 105.
3. Kauffman, G. B. Coord. Chem. Rev. 1975, 15, 1.
4. Bertrand, J. A.; Cotton, F. A.; Dollase, W. A. Inorg. Chem. 1963, 2, 1166.
5. Bertrand, J. A.; Cotton, F. A.; Dollase, W. A. J. Am. Chem. Soc. 1963, 85, 1349
6. Cotton, F. A.; Curtis, N. F.; Harris, C. B.; Johnson, B. F. G.; Lippard, S. J.; Mague, J. T.; Robinson, W. R.; Wood, J. S. Science. 1964, 145, 1305.
7. Cotton, F. A.; Nocera, D.G. Acc. Chem. Res. 2000, 33, 483.
8. Kuending, E. P.; Moskovits, M.; Ozin, G. A. Nature (London). 1975, 254, 503.
9. Klotzbuecher, W.; Ozin, G. A. Inorg. Chem. 1977, 16, 984.
10. Gupta, S. K.; Atkins, R. M.; Gingerich, K. A. Inorg. Chem. 1978, 17, 3211.
11. Efremov, Y. M.; Samoilova, A. N.; Kozhukhovskii, V. B.; Gurvich, L. V. J. Mol. Spectrosc. 1978, 73, 430.
12. W. Weltner, J.; Zee, R. J. V. Annu. Rev. Phys. Chem. 1984, 35, 291.
13. Morse, M. D. Chem. Rev. 1986, 86, 1049.
14. Xiao, Z. L.; Hauge, R. H.; Margrave, J. L. J. Phys. Chem. B 1992, 96, 636.
15. Casey, S. M.; Villalta, P. W.; Bengali, A. A.; Cheng, C. L.; Dick, J. P.; Fenn, P. T.; Leopard, D. G. J. Am. Chem. Soc. 1991, 113, 6688.
16. Casey, S. M.; Leopard, D. G. J. Phys. Chem. B 1993, 97, 816.
17. Casey, S. M.; Leopard, D. G. Chem. Phys. Lett. 1993, 201, 205.
18. Chisholm, M. H. Chem. Rev. 2005, 105, 2949.
19. Kant, A.; Strauss, B. H. J. Chem. Phys. 1966, 45, 3161.
20. Kraus, D.; Lorenz, M.; Bondybey, V. E. Phys. Chem. Comm. 2001, 4, 44.
21. Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: UK/New York. 2005.
22. Gagliardi, L.; Roos, B. O. Nature (London). 2005, 433, 848.
23. Landis, C. R.; Weinhold, F. J. Am. Chem. Soc. 2006, 128, 7335.
24. Weinhold, F.; Landis, C. R. Science. 2007, 316.
25. Merino, G.; Donald, K. J.; D’Acchioli, J. S.; Hoffmann, R. J. Am. Chem. Soc. 2007, 129, 15295.
26. Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Science, 2005, 310, 844.
27. Dedieu, A.; Albright, T. A.; Hoffmann, R. J. Am. Chem. Soc. 1979, 101, 3141.
28. Tsai, Y.-C.; Hsu, C.-W.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. Angew. Chem. Int. Ed. 2008, 47, 7250.
29. Hsu, C.-W.; Yu, J.-S. K.; Yen, C.-H.; Lee, G.-H.; Wang, Y.; Tsai, Y.-C. Angew. Chem. Int. Ed. 2008, 47, 9933.
30. D. Kraus, M. L.; Bondybey, V. E. Phys. Chem. Comm. 2001, 4, 44.
31. Pellin, M. J.; Foosnaes, T.; Gruen, D. M. J. Chem. Phys. 1981, 74.
32. Bursten, B. E.; Cotton, F. A.; Hall, M. B. J. Am. Chem. Soc. 1980, 102, 6348.
33. Atha, P. M.; Hillier, I. H.; Guest, M. F. Chem. Phys. Lett. 1980, 75, 84.
34. Efremov, Y. M.; Samoilova, A. N.; Kozhukhovskii, V.B.; Gurvich, L. V. J. Mol. Spectrosc. 1978, 73, 430-440.
35. Tsai, Y.-C.; Chen, H.-Z.; Chang, C.-C.; Yu, J.-S. K.; Lee, G.-H.; Wang, Y.; Kuo, T.-S. J. Am. Chem. Soc. 2009, 131, 12534.
36. Strutz, H; Schrock, R. R. Organometallics. 1984, 3, 1600.
37. Chacon, S. T.;Chisholm, M.H.; Eisenstein, O.;Huffman, J. C. J. Am. Chem. Soc. 1992, 114, 8497.
38. Chisholm, M. H.; Huffman, J. C.; Hampden-Smith, M. J. J. Am. Chem. Soc. 1989, 111, 5284.
39. Chisholm, M. H.; Hoffman, D. M.; Huffman, J. C.; Organometallics. 1985, 4, 986.
40. Ni, C.; Ellis, B. D.; Long, G. J.; Power, P. P. Chem. Commun. 2009, 2332.
41. 顏君旭, 國立清華大學化學研究所碩士論文. 2009.
42. 劉士誠, 國立清華大學化學研究所碩士論文. 2010.
43. 陳思妏, 國立清華大學化學研究所碩士論文. 2011.
44. Cotton, F. A.; Murillo, C.A.; Walton, R. A.;Eds Multiple Bonds Between Metal Atoms, Third Edition; Springer Science and Business Media, Inc.: New York. 2005.
45. Cotton, F. A.; Koch, S.; Mertis, K.; Millar, M. Wilkinson, G. J. Am. Chem. Soc. 1977, 99, 4989.
46. Schrock, R. R.; Sturgeoff, L.G.; Sharp, P. R. Inorg. Chem. 1983, 22, 2801.
47. Eglin, J. L. Multiple Bonds between Metal Atoms(3rd Edition). 2005.
48. 陳宏章, 國立清華大學化學研究所碩士論文. 2011.
49. Kawashima, T.; Takao, T.; Suzuki, H. Angew. Chem. Int. Ed. 2006, 45, 485.
50. de Bellefon, C.; Fouilloux, P. Catalysis Reviews: Science and Engineering. 1994, 36, 459
51. Michelin, R. A.; Mozzon, M.; Bertani, R. Coord. Chem. Rev. 1996, 147, 299.
52. Feng, Q.; Ferrer, M.; Green, M. L. H.; Mountford, P.; Mtetwa, V. S. B. J. Chem. Soc. Dalton Trans. 1992, 1205.
53. Garcia Alonso, F. J.; Garcia Sanz, M.; Riera, V.; Anillo Abril, A.; Tiripicchio, A.; Ugozzoli, F. Organometallics. 1992, 11, 801.
54. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. Polyhedron. 1998, 17, 126
55. Li, B.; Xu, S.; Song, H; Wang, B. J. Organomet. Chem. 2008, 693, 87.
56. Fryzuk, M. D.; McConville, D. H.; Rettig, S. J. Organometallics. 1993, 12, 2152.
57. Crabtree, R. H.; Mingos, D. M. P. Comprehensive Organometallic Chemistry III, Volumrs 1-13; Elsevier, 2007.
58. Camara, J. M.; Petros, R. A.; Norton, J. R. J. Am. Chem. Soc. 2011, 133, 5263.
59. Noor, A.; Glatz, G.; Müller, R.; Kaupp, M.; Demeshko, S.; Kempe, R. Nature Chemistry 2009, 1, 322.
60. 陳譔宇, 國立清華大學化學研究所碩士論文. 2013.
61. 劉信呈, 國立清華大學化學研究所碩士論文. 2010.
62. F. Albert Cotton; Lee M. Daniels; Carlos A. Murillo; Xiaoping Wang. Inorg. Chem. 1997, 36, 896.