簡易檢索 / 詳目顯示

研究生: 林儀嘉
Lin, Yi-Chia
論文名稱: 偶氮苯超分子材料之光熱機械運動
Mechanical motions of azobenzene-containing supramolecular materials
指導教授: 堀江正樹
Horie, Masaki
口試委員: 周鶴修
Chou, Ho-Hsiu
游進陽
Yu, Chin-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 134
中文關鍵詞: 準輪烷單晶順反異構化光致機械運動偶氮苯
外文關鍵詞: pseudorotaxane, azobenzene, cis-trans isomerization, single crystal, photomechanical conversion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此篇研究中,我們設計與合成了數種含有偶氮苯結構的分子機械,並以此類設計去探索嶄新的晶體中的分子動態反應。在此含有軸-環結構之分子機械中,選擇了含偶氮苯的銨鹽做為軸分子設計,並佐以不同官能基,例如:氫原子、甲氧基、甲苯基以了解不同官能基對分子機械的影響,而環分子則選擇環冠醚,例如:二苯並-18-冠-6醚或二苯並-24-冠-8醚等。分子機械晶體的結晶是由乙醚溶劑擴散至溶解度佳的溶液中形成的。所有的分子機械晶體均檢測過核磁共振光譜的氫譜、質譜儀和X-射線單晶繞射儀。研究中所有含偶氮苯分子機械的單晶均在445奈米或360奈米波長的雷射中進行光機械轉換的實驗,並有部分單晶可顯示可受特定雷射控制巨觀的分子型變。此篇研究也透過單晶中的分子排列進行分子機械晶體的光致運動變化的研究。這些可受光熱等外部刺激控制的晶體運動將可做為日後奈米尺度的元件設計。


    In this research, we have designed and synthesized complexes comprising of azobenzene with various functional groups to explore new molecular dynamics in crystal state. Axle molecules with azobenzene-containing ammonium salt tethered with -H, -methoxyl, or -tolyl groups were complexed with dibenzo[18]crown-6 ether (DB18C6) or dibenzo [24]crown-8 ether (DB24C8) ring molecule in a soluble solution and they were crystalized by the ether vapor diffusion method. These complexes and axle molecule precursors were characterized by 1H NMR and mass spectrometry. Their molecular structures were also confirmed by single-crystal X-ray crystallography. Single crystals of these azobenzene-containing complexes were used for photomechanical conversion under alternating 360-nm and 445-nm laser irradiation, showing specific bending motions. These crystal dynamics were discussed based on their molecular structures obtained by single-crystal X-ray crystallography. The mechanical characteristics of such molecular machines could be applied to nano-microscale devices.

    Abstract II 摘要 III Chapter 1  Introduction and Aim 4 1.1 Supramolecular chemistry 4 1.1.1 History of supramolecular chemistry 4 1.1.2 Molecular machines and MIMs 6 1.1.3 Supramolecules in crystalline states 9 1.2 Functionalized crystals 10 1.2.1 Photo-induced properties of crystals 10 1.2.3 Other functionalized properties of crystals 18 1.3 Mechanism of azobenzene crystals and methodologies of conformation measurements 20 1.4 Aim of the work 27 Chapter2  Synthesis and crystallization methodologies and characterization 31 2.1 Introduction: blueprint of completed experiments 31 2.2 Synthesis methodologies and characterization 33 2.3 Optimizations of synthesis 44 2.4 Crystallization 45 Chapter 3  Photo- and thermally induced mechanical motions of azobenzene-containing complexes 48 3.1 Measurement methodologies 48 3.2 Appearances of crystals 51 3.3 Molecular alignment in a unit cell 52 3.3.1 Complex 1 52 3.3.2 Series of Complex 2 56 3.4 Photo-induced properties 62 3.4.1 Complex 1a 62 3.4.2 Complex 1b 63 3.4.3 Series of Complex 2 65 3.5 Thermal-induced properties 67 3.5.1 Complex 1a 67 3.5.2 Complex 1b 67 3.5.3 Series of Complex 2 68 Chapter 4  Photo- and thermal-induced mechanical motions of Complex 3 series 71 4.1 Appearance of crystals 71 4.2 Molecular alignment in a unit cell 71 4.3 Characterizations of crystals 77 4.4 Discussion and summary of this chapter 80 Chapter 5  Discussions 81 Chapter 6  Summary and future prospective 95 Appendix  Experimental section 96 A.1  General synthesis methods 96 A.2 Preparation of precursors 97 Synthesis of 4-((4-methoxyphenyl)diazenyl)benzonitrile: 97 Synthesis of (4-((4-methoxyphenyl)diazenyl)phenyl)methanamine: 98 Synthesis of 1,1’-Ferrocenedicarboxaldehyde: 99 A.3 Preparation of Complex 1 102 Synthesis of (E)-(4-((4-methoxyphenyl)diazenyl)phenyl)methanaminium chloride: 102 Synthesis of Axle 1 102 Synthesis of Complex 1 103 A.4 Preparation of Complex 2 107 Synthesis of (E)-N-(4-((E)-(4-methoxyphenyl)diazenyl)benzyl)-1-(p-tolyl)methanimine: 107 Synthesis of (E)-N-(4-((4-methoxyphenyl)diazenyl)benzyl)-1-(p-tolyl)methanamine: 107 Synthesis of (E)-N-(4-((4-methoxyphenyl)diazenyl)benzyl)-1-(p-tolyl)methanaminium chloride: 108 Synthesis of Complex 2 110 A.5 Preparation of Complex 3 116 Synthesis of 1,1’-ferrocenyldimethylimine-4-(4’- methoxyl)diazenyl)phenyl)methanamine 116 Synthesis of Axle 3 117 Synthesis of Complex 3 118 A.6 X-ray single crystallography 123 Precursor 123 Axle 2 124 Complex 1a 125 Complex 1b 126 Complex 2 127 Complex 3 128 References 132

    1. G. R. Desiraju, Nature, 2001, 412, 397.
    2. C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017-7036.
    3. N. Koumura, R. W. Zijlstra, R. A. van Delden, N. Harada and B. L. Feringa, Nature, 1999, 401, 152.
    4. D. J. Cram and J. M. Cram, Acc. Chem. Res., 1978, 11, 8-14.
    5. J. M. Lehn, Angew. Chem. Int. Ed., 1988, 27, 89-112.
    6. J. F. Stoddart, Angew. Chem. Int. Ed. , 2017, 56, 11094-11125.
    7. M. Weck, B. Mohr, J.-P. Sauvage and R. H. Grubbs, J. Org. Chem, 1999, 64, 5463-5471.
    8. P. L. Anelli, P. R. Ashton, N. Spencer, A. M. Slawin, J. F. Stoddart and D. J. Williams, Angew. Chem. Int. Ed., 1991, 30, 1036-1039.
    9. P. L. Anelli, N. Spencer and J. F. Stoddart, ‎J. Am. Chem. Soc., 1991, 113, 5131-5133.
    10. B. L. Feringa and R. A. Van Delden, Angew. Chem. Int. Ed., 1999, 38, 3418-3438.
    11. C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 7017-7036.
    12. M. Weck, B. Mohr, J.-P. Sauvage and R. H. Grubbs, J. Org. Chem, 1999, 64, 5463-5471.
    13. Y. Okumura and K. Ito, Adv. Mater., 2001, 13, 485-487.
    14. P. J. Altmann and A. Pöthig, Angew. Chem. Int. Ed., 2017, 56, 15733-15736.
    15. C. P. Collier, G. Mattersteig, E. W. Wong, Y. Luo, K. Beverly, J. Sampaio, F. M. Raymo, J. F. Stoddart and J. R. Heath, Science, 2000, 289, 1172-1175.
    16. P.-T. Chiang, J. Mielke, J. Godoy, J. M. Guerrero, L. B. Alemany, C. J. Villagomez, A. Saywell, L. Grill and J. M. Tour, ACS Nano, 2011, 6, 592-597.
    17. G. Rapenne and C. Joachim, Nat. Rev. Mater., 2017, 2, 17040.
    18. M. A. Garcia-Garibay, Proc. Natl. Acad. Sci., 2005, 102, 10771-10776.
    19. J. García-Amorós and D. Velasco, Beilstein J. Org. Chem, 2012, 8, 1003-1017.
    20. N. K. Nath, M. K. Panda, S. C. Sahoo and P. Naumov, CrystEngComm, 2014, 16, 1850-1858.
    21. T. Kim, L. Zhu, L. J. Mueller and C. J. Bardeen, J. Am. Chem. Soc., 2014, 136, 6617-6625.
    22. K. Konieczny, J. Bakowicz, R. Siedlecka, T. Galica and I. Turowska-Tyrk, Cryst. Growth Des, 2017, 17, 1347-1352.
    23. K. M. Lee and T. J. White, Macromolecules, 2012, 45, 7163-7170.
    24. S.-H. Lee, M. Jazbinsek, C. P. Hauri and O.-P. Kwon, CrystEngComm, 2016, 18, 7180-7203.
    25. S. Li and D. Yan, ACS Appl. Mater. Interfaces, 2018, 10, 22703-22710.
    26. H. Koshima, N. Ojima and H. Uchimoto, J. Am. Chem. Soc., 2009, 131, 6890-6891.
    27. Y. Norikane, S. Tanaka and E. Uchida, CrystEngComm, 2016, 18, 7225-7228.
    28. D. Kitagawa, H. Nishi and S. Kobatake, Angew. Chem. Int. Ed., 2013, 52, 9320-9322.
    29. S.-C. Cheng, K.-J. Chen, Y. Suzaki, Y. Tsuchido, T.-S. Kuo, K. Osakada and M. Horie, J. Am. Chem. Soc., 2017, 140, 90-93.
    30. T. Taniguchi, H. Sugiyama, H. Uekusa, M. Shiro, T. Asahi and H. Koshima, Nat. Commun., 2018, 9, 538.
    31. K.-J. Chen, Y.-C. Tsai, Y. Suzaki, K. Osakada, A. Miura and M. Horie, Nat. Commun., 2016, 7, 13321.
    32. D. N. Dybtsev, H. Chun, S. H. Yoon, D. Kim and K. Kim, J. Am. Chem. Soc, 2004, 126, 32-33.
    33. F. Yu, D.-D. Li, L. Cheng, Z. Yin, M.-H. Zeng and M. Kurmoo, Inorg. Chem., 2015, 54, 1655-1660.
    34. J. Park, D. Yuan, K. T. Pham, J.-R. Li, A. Yakovenko and H.-C. Zhou, J. Am. Chem. Soc., 2011, 134, 99-102.
    35. K. G. Yager and C. J. Barrett, J. Photochem. Photobiol., A ,2006, 182, 250-261.
    36. K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki and K. Aoki, Langmuir, 1988, 4, 1214-1216.
    37. H. D. Bandara and S. C. Burdette, Chem. Soc. Rev, 2012, 41, 1809-1825.
    38. E. Wei-Guang Diau, J. Phys. Chem. A, 2004, 108, 950-956.
    39. G. F. Martins and B. J. C. Cabral, J. Phys. Chem. A 2019.
    40. M. Takahashi, T. Okuhara, T. Yokohari and K. Kobayashi, J. Colloid Interface Sci, 2006, 296, 212-219.
    41. T. Ikegami, N. Kurita, H. Sekino and Y. Ishikawa, J. Phys. Chem. A, 2003, 107, 4555-4562.
    42. S. Schuster, M. Füser, A. Asyuda, P. Cyganik, A. Terfort and M. Zharnikov, Phys Chem Chem Phys, 2019, 21, 9098-9105.
    43. C. Dri, M. V. Peters, J. Schwarz, S. Hecht and L. Grill, ‎Nat. Nanotechnol, 2008, 3, 649.
    44. J. Henzl, M. Mehlhorn, H. Gawronski, K. H. Rieder and K. Morgenstern, Angew. Chem. Int. Ed., 2006, 45, 603-606.
    45. J. L. Magee, W. Shand Jr and H. Eyring, J. Am. Chem. Soc., 1941, 63, 677-688.
    46. J. Casellas, M. J. Bearpark and M. Reguero, ChemPhysChem, 2016, 17, 3068-3079.
    47. G. Pace, V. Ferri, C. Grave, M. Elbing, C. von Hänisch, M. Zharnikov, M. Mayor, M. A. Rampi and P. Samorì, ‎Proc. Natl. Acad. Sci., 2007, 104, 9937-9942.
    48. N. Crivillers, A. Liscio, F. Di Stasio, C. Van Dyck, S. Osella, D. Cornil, S. Mian, G. Lazzerini, O. Fenwick and E. Orgiu, Phys. Chem. Chem. Phys, 2011, 13, 14302-14310.

    QR CODE