研究生: |
施智超 Jhy-Chau Shih |
---|---|
論文名稱: |
RT2材料的磁伸縮與磁性研究 (R=Tb, Dy; T=Fe, Be, Mn, Al) Magnetostriction and magnetic properties of RT2 (R=Tb, Dy; T=Fe, Be, Mn, Al) |
指導教授: |
金重勳
Tsung-Shune Chin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 磁伸縮 、稀土-過渡元素 、磁性 、微機電系統 、磁歪 、鋱鐵 、鋱鏑鐵 |
外文關鍵詞: | magnetostriction, magnetostrictive, magnetic, MEMS, Terfenol, Terfenol-D, TbFe2, Tb-Dy-Fe |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁伸縮材料能將電磁能與機械能互相轉換,在微機電及感測元件的應用上極具潛力,因此引起廣泛的研究與討論。本文針對Tb0.3Dy0.7(Fe, Be)2塊材、Tb(Fe, Mn, Al)2塊材、Tb0.3Dy0.7(Fe, Mn, Al)2薄帶和Tb-Fe薄膜的磁性及磁伸縮應變加以研究。
利用電弧熔鍊的方式將不同比例的鋱、鈹、錳、鋁、鏑及鐵,熔鍊形成Tb0.3Dy0.7(Fe1-xBex)2塊材(x= 0~0.1)、Tb(Fe0.9MnxAl0.1-x)2塊材(x= 0~0.1),結果顯示添加少量的鈹取代Tb0.3Dy0.7Fe2中的鐵,對硬度、磁伸縮係數l、動態應變係數最大值d33max和相對應的磁場Hd33max都有正面的作用,最佳條件的樣品鈹含量為6.67原子百分比,當外加磁場為0.5 kOe時,磁伸縮為原來未添加鈹的6倍;d33max從97×10-9 Oe-1提升到256×10-9 Oe-1,為原來的2.5倍;Hd33max從1.62 kOe降低為0.62 kOe。同時添加少量的錳和鋁取代TbFe2中的鐵,對硬度、小磁場中的l、d33max和Hd33max都能有所改善,最佳條件的樣品錳含量為2.67原子百分比,當外加磁場為1 kOe時,磁伸縮為TbFe2的11倍;d33max從210×10-9 Oe-1提升到360×10-9 Oe-1;Hd33max從1.75 kOe降低為0.56 kOe。
Tb0.3Dy0.7(Fe0.9Mnx Al0.1-x)2薄帶是運用單輪熔液旋淬法製作,銅輪轉速介於30到40 m/s之間。薄帶Mn-01與Mn-05的樣品有立方型Laves phase部分結晶,而樣品Mn-07與Mn-09的樣品則有富稀土相析出。由磁伸縮係數的量測結果得知,薄帶的磁伸縮應變不適合用應變規來量測。
利用直流磁控濺鍍的方式,改變不同濺鍍參數製作Tb-Fe薄膜。並藉由磁力顯微鏡,觀測不同膜厚、基板溫度及濺鍍功率的薄膜表面磁結構。此外,施加大小不一的張應力於薄膜上,並觀察表面磁結構的變化。最後再運用微磁學的理論,討論所觀測到的磁區結構,並計算出樣品的單位面積磁壁能及交換常數。
The magnetostrictive materials are potential for MEMS and device applications, because of their capability to convert magnetic energy to mechanical energy. This thesis reports the magnetostriction and magnetic properties of Tb0.3Dy0.7(Fe,Be)2 bulks, Tb(Fe,Mn,Al)2 bulks, Tb0.3Dy0.7(Fe,Mn,Al)2 ribbons and Tb-Fe thin films.
Ingots of Tb0.3Dy0.7(Fe1-xBex)2 (x= 0~0.1) and Tb(Fe0.9MnxAl0.1-x)2 (x= 0~0.1) alloys were prepared from 99.9% purity Tb, Dy, Fe, Be, Mn and Al by acr-melting in a cold copper crucible under an argon atmosphere. The results indicate that the addition of beryllium improves hardness, magnetostriction l, dynamic strain coefficient d33max and lowers the corresponding field Hd33max for Tb0.3Dy0.7(Fe1-xBex)2 alloys. The optimum specimen of Be-series is that 6.67 at.% Be, and the magnetostriction is five times larger then unmodified under a magnetic field 0.5 kOe. The d33max value of the optimum specimen (256×10-9 Oe-1) is 1.5 times larger then that of original specimen (97×10-9 Oe-1), and Hd33max is improved from 1.62 kOe to 0.62 kOe.
The modification by both Mn and Al improves hardness, l at low field, d33max and lowers Hd33max for Tb(Fe0.9MnxAl0.1-x)2 alloys. The x=0.04 (2.67 at.% Mn) alloy is the optimum one in Mn-Al-series, and the magnetostriction is ten times larger then that unmodified under a magnetic field 1 kOe. The d33max value of the optimum specimen increases from 210×10-9 Oe-1 to 360×10-9 Oe-1, and Hd33max is improved from 1.75 kOe to 0.56 kOe.
Tb0.3Dy0.7(Fe0.9MnxAl0.1-x)2 ribbons were prepared by melt-spinning method. All of the specimens contain partial crystalline of Laves phase or rare earth rich phase, even the wheel speed achieved 40 m/s. The results indicate that strain gauge method is not suitable for measuring magnetostriction of ribbons.
Tb-Fe thin films were prepared by DC magnetron sputtering from an alloy-target with different sputtering parameters, which included substrate temperature, sputtering time and power. The magnetic force microscopy was used to observe the domain structure of the samples. The domain structure versus strain effect was studied. From the domain observe, we calculated the domain wall energy per unit area and exchange const.
[1] Welle, Ultrasonic data communication system, United States Patent 5982297, Nov. 9, 1999.
[2] Silverbrook, Micro electro-mechanical system for ejection of fluids, United States Patent 6299300, Oct. 9, 2001.
[3] Osiander et al., Microelectromechanical (MEMS)-based magnetostrictive magnetometer, United States Patent 5998995, Dec. 7, 1999.
[4] Whitehead et al., Elastomeric micro electro mechanical systems, United States Patent 5642015, Jun. 24, 1997.
[5] Silverbrook, Thermal actuator, United States Patent 6067797, May 30, 2000.
[6] Henderson et al., Linear incremental bi-directional motor, United States Patent 6380661, Apr. 30, 2002.
[7] Hooley, Motors, and bearings therefore, United States Patent 6309106, Oct. 30, 2001.
[8] Joyce, Linear actuator with expansion device, United States Patent 6300692, Oct. 9, 2001.
[9] Linnemann et al., Micromembrane pump, United States Patent 6261066, Jul. 17, 2001.
[10] Silverbrook, Utilizing venting in a MEMS liquid pumping system, United States Patent 6340222, Jan. 22, 2002.
[11] Kottke, Reciprocating pumps with linear motor driver, United States Patent 6283720, Sep. 4, 2001.
[12] Opie et al., Magnetoelastic torque sensor, United States Patent 6330833, Dec. 18, 2001.
[13] Kouketsu et al., Magnetostrictive torque sensor, United States Patent 6412356, Jul. 2, 2002.
[14] Bick et al., Bow dome sonar, United States Patent 6341661, Jan. 29, 2002.
[15] Lotito et al., Ultrasonic occupant position sensing system, United States Patent 6304179, Oct. 16, 2001.
[16] Dale, Pressure tolerant transducer, United States Patent 6404106, Jun. 11, 2002.
[17] Okazaki et al., Lubricating device, United States Patent 6398509, Jun. 4, 2002.
[18] A. E. Clark, “Handbook on the Physics and Chemistry of Rare Earth,” Chap. 15, 1979.
[19] R. M. Bozorth, “Ferromagnetism,” Chap 13, U. M. I., 1951.
[20] D. J. Claik, “Magnetic Oxides,” Chap 6, John Wiley & Sons, 1975.
[21] A. E. Clark, H. T. Savage, and R. M. Bozorth, Phys. Rev. 138, A216, 1965.
[22] J. J. Rhyne and S. Legvold, Phys. Rev. 138, A507, 1965.
[23] S. Yoshino, M. Masuda, H. Takagi, S. Tsunashima, and S. Uchiyama, Jpn. J. Appl. Phys. 21, 1527, 1982.
[24] G. Vlasak, P. Duhaj, H. Patrasova, P. Svec, J. Phys. E 16, 1203, 1983.
[25] H. K. Lachowicz and H. Szymczak, J. Magn. Magn. Mater. 41, 327, 1984.
[26] A. Hernando, E. Ascasibar, M. Liniers, V. Madurga, and M. Vazquez, J. Magn. Magn. Mater. 61, 39, 1986.
[27] C. N. Devillavicencio, A. Hernando, V Madurga, and M. Vazquez, J. Magn. Magn. Mater. 59, 333, 1986.
[28] A. Delmoral,J. S. Abell, J. I. Arnaudas, M. R. Ibarra, and E. W. Lee, J. Phys. C 19, 579, 1986.
[29] D. X. Chen, J. Appl. Phys. 61, 3781, 1987.
[30] M. J. R. Gibbs, D. Brugel, S. C. Hardy, P. T. Squire, and J. Willson, J. Appl. Phys. 61, 3784, 1987.
[31] J. P. Teter, A. E. Clark, and O. D. Mcmasters, J. Appl. Phys. 61, 3787, 1987.
[32] A. M. Severino and F. P. Missell, J. Magn. Magn. Mater. 68, 291, 1987.
[33] H. Szymczak, J. Magn. Magn. Mater. 67, 227, 1987.
[34] P. T. Squire and M. J. R. Gibbs, J. Phys. E 20, 499, 1987.
[35] J. Wenda, H. Jankowski, and A. Kulak, Thin Solid Films 148, 1, 1987.
[36] N. H. Chau, N. H. Duc, and T. D. Hien, ACTA PHYSICA POLONICA A, 73, 733, 1988.
[37] A. E. Clark, J. P. Teter, and O. D. Mcmasters, IEEE Trans. Magn. 23, 3526, 1987.
[38] L. Kraus, J. Phys. E 22, 943, 1989.
[39] S. Ishio and S. Kadowaki, J. Magn. Magn. Mater. 79, 358, 1989.
[40] H. Fukunaga and N. Akagi, Jpn. J. Appl. Phys. 28, 45, 1989.
[41] N. H. Chau, J. Zukrowski, K. Krop, T. D. Hien, and N. H. Duc, Physica Status Solidi A 114, 361, 1989.
[42] A. Hernando, C. Gomezpolo, E. Pulido, G. Rivero, M. Vazquez, A. Garciaescorial, and J. M. Barandiaran, Phys. Rev. B 42, 6471, 1990.
[43] F. Claeyssen, D. Boucher, A. Foggia, and E. Sabonnadiere, IEEE Trans. Magn. 26, 975, 1990.
[44] M. Goodfriend, JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY 42, 49, 1990.
[45] J. L. Butler, S. C. Butler, and A. E. Clark, JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 88, 7, 1990.
[46] K. R. Dhilsha, G. Markandeyulu, and Rao Kvsr, J. Appl. Phys. 70, 4450, 1991.
[47] D. G. R. Jones, J. S. Abell, and I. R. Harris, J. Magn. Magn. Mater. 104, 1468, 1992.
[48] L. Gates and G. Stroink, Rev. Sci. Instrum 63, 2017, 1992.
[49] F. Schatz, M. Hirscher, G. Flik, and H. Kronmüller, Phys. Stat. Sol. (a) 137, 197, 1993.
[50] P. I. Williams, D. G. Lord, and P. J. Grundy, J. Appl. Phys. 75, 5257, 1994.
[51] K. Prajapati, A. G. Jenner, and R. D. Greenough, IEEE Trans. Magn. 31, 3976, 1995.
[52] W. Mei, T. Umeda,S. Z. Zhou, R. Wang, J. Alloys Compd. 224, 76, 1995.
[53] M. Inoue andT. Fujii, IEEE Trans. Magn. 32, 4758, 1996.
[54] N. H. Duc, K. Mackay, J. Betz, and D. Givord, J. Appl. Phys. 79, 973, 1996.
[55] H. Zhang, H. Zhu, and T. Du, J. Alloys Compd. 258, 20, 1997.
[56] S. Kishore, G. Markandeyulu, K. V. S. Rama Rao, J. Alloys Compd. 258, 17, 1997.
[57] C. Prados, I. Panagiotopoulus, and G. C. Hadjipanayis, IEEE Trans. Magn. 33, 3712, 1997.
[58] E. Quandt, A. Ludwig, J. Betz, K. Mackay, and D. Givord, J. Appl. Phys. 81, 5420, 1997.
[59] A. Speliotis, O. Kalogirou, N. Vouroutzis, and D. Niarchos, J. Magn. Magn. Mater. 187, 17, 1998.
[60] M. Wuttig, Q. Su, and F. Masson, J. Appl. Phys. 83, 7264, 1998.
[61] S. H. Lim, S. Y. Kang, S. R. Kim, J. K. Park, J. H. Park, and Derac Son, J. Magn. Soc. Jpn. 23, 543, 1999.
[62] Z. J. Guo, S. C. Busbridge, B. W. Wang, Z. D. Zhang, and X. G. Zhao, J. Appl. Phys. 85, 6677, 1999.
[63] M. Wun-Fogle, J. B. Restorff, and A. E. Clark, J. Appl. Phys. 85, 6253, 1999.
[64] F. Jerems and R. D. Greenough, J. Appl. Phys. 85, 4500,1999.
[65] T. M. Danh, N. H. Duc, and N. H. Thanh, J. Appl. Phys. 87, 7208, 2000.
[66] M. Pasquale, A. Infortuna, L. Martino, C. Sasso, C. Beatrice, and S. H. Lim, J. Magn. Magn. Mater. 215-216, 769, 2000.
[67] C. de la Fuente, J. I. Arnaudas, M. Ciria, and A. del Moral, Phys. Rev. B 63, 54417, 2001.
[68] S. L. Tang, D. H. Wang, S. G. Yang, Z. Q. J. R. Zhang, S. Y. Zhang, and Y. W. Du, J. Appl. Phys. 91, 271, 2002.
[69] J. L. Chen, S. X. Gao, W. H. Wang, M. Zhang, G. H. Wu, Y. X. Li, J. P. Qu, G. and Z. Xu, J. Crystal Growth 236, 305, 2002.
[70] J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys. 40, 4948, 2001.
[71] G. Srinivasan, E. T. Rasmussen, J. Gallegos, R. Srinivasan, Y. I. Bokhan, and V. M. Laletin, Phys. Rev. B 64, 214408, 2001.
[72] G. Srinivasan, E. T. Rasmussen, B. J. Levin, and R. Hayes, Rev. B 65, 134402, 2002.
[73] P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. 49, 295, 1984.
[74] T. Kanomata, K. Shirakawa, and T. Kaneko, J. Magn. Magn. Mater. 65, 76, 1987.
[75] V. A. Chernenko, J. Phys. IV 5(C2), 77, 1995.
[76] V. A. Chernenko, A. Amenguala, E. Cesari, V. V. Kokorin, and I. K. Zasimchuk, J. Phys. IV 5(C2), 95, 1995.
[77] V. A. Chernenko, V. V. Kokorin, A. N. Vasilev, Y. I. Savchenko, Phase Trans. 43(1-4), 187, 1995.
[78] V. A. Chernenko, E. Cesari, V. V. Kokorin, and I. N. Vitenko, Scripta Metall Mater. 33, 1239, 1995.
[79] C. H. Yu, W. H. Wang, J. L. Chen, G. H. Wu, F. M. Yang, N. Tang, S. R. Qi, Z. Wang, Y. F. Zheng, and L. C. Zhao, J. Appl. Phys. 87, 6292, 2000.
[80] C. Kittel, in Solid State Physics, edited by F. Seitz, Dturnbull, and H. Ehrenreich, 22, 1 (Academic, New York, 1968).
[81] B. D. Cullity, “INTRODUCTION TO MAGNETIC MATERIALS,” Chap. 8 ,1984.
[82] S. Chikazumi, Physics of Magnetism (Willey, New York, 1964).
[83] F. Schatz, M. Hirscher, M. Schnell, G. Flik, and H. Krömuller, J. Appl. Phys. 76, 5380, 1994.
[84] A. E. Clark, J. Intelligent Mater. System Structures, 4, 70, 1993.
[85] A. E. Clark, H. T. Savage, and M. L. Spano, IEEE Trans. on Magn. 19, 1964, 1983.
[86] D. Ivey and D. Northwood, J. Less Common Metal, 115, 23 (1986)
[87] 圖取自於網頁http://cst-www.nrl.navy.mil/lattice/struk/c15.html
[88] E. Trémolet de Lacheisserise, and J. C. Peuzin, J. Magn. Magn. Mater. 136, 189, 1994.
[89] J. Bezt, E. du Trémolet Lacheisserise, and L. T. Baczewski, Appl. Phys. Lett. 68, 132, 1996.
[90] G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930, 1986.
[91] Y. Martin and H. K. Wichramashinghe, Appl.Phys. Lett. 50, 1455, 1987.
[92] 韓寶善,磁性技術協會會訊 第32期,第1頁,2002。
[93] L. S. Kong and S. Y. Chou, Appl. Phys.Lett. 70, 2043, 1997.
[94] 孫志剛,稀土過渡族金屬尖化合物R2Co17-xMnx的結構合磁性及2:17型快淬帶的磁力顯微鏡研究,中國科學院物理研究所博士論文,第30頁,2000年6月。
[95] 取自國立清華大學材料系掃描探針表面分析實驗網頁http://www.mse.nthu.edu.tw/~hnlin/spm-1.htm
[96] K. L. Babcock, L. Folks, R. Street, R. C. Woodward, and D. L. Bradbury, J. Appl. Phys. 81, 4438, 1997.
[97] Y. Yokoyama, M. Usukura, S. Yuasa, Y. Suzuki, H. Miyajima, and T. Katayama, J. Magn. Magn. Mater. 177-181, 181, 1998.
[98] Q. Y. Lu, C. C. Chen, and A. Dwlocanne, Science, 276, 2006, 1997.
[99] T. Chang and J. G. Zhu, J. Appl. Phys. 73, 6716, 1993.
[100] Foner, Simon, “Versatile and Sensitive Vibrating-Sample Magnetometer,” Rev. Sci. Instr. 30, 548, 1959.
[101] 取自國立交通大學光資訊儲存實驗室網頁http://osdlab.eic.nctu.edu.tw/OSLAB/device/vsm.htm
[102] J. S. Abell, D. Bulter, R. D. Greenough, V. Joyce, and K. C. Pitman, J. Magn. Magn. Mater. 62, 6, 1986.
[103] E. Quandt, J. Appl. Phys. 75, 5653, 1994.
[104] E. Quandt, J. Alloys Compd. 258, 126, 1997.
[105] P. J. Grundy, D. G. Lord, and P. I. Williams, J. Appl. Phys. 76, 7003, 1994.
[106] D. W. Forester, C. Vittoria, J. Schelleng, and P. Lubitz, J. Appl. Phys. 49, 1966, 1978.
[107] Y. Hayashi, T. Honda, K. I. Arai, K. Ishiyama, and M. Yamaguchi, IEEE Trans. Magn. 29, 3129, 1993.
[108] T. S. Chin, S. H. Huang, and J. M. Yau, Appl. Phys. Lett. 59, 2046, 1991.
[109] B. D. Cullity, “Elements of X-Ray Diffraction”, 2nded., Addison-Wesley, 1978.
[110] B. D. Cullity, “INTRODUCTION TO MAGNETIC MATERIALS,” Chap. 9, 317,1984.
[111] K. Prajapati, A. G. Jenner, M. P. Schulze, and R. D. Greenough, J. Appl. Phys., 73, 6171, 1993.
[112] K. B. Hathaway and A. E. Clark, Magnetostrictive Materials, MRS Bulletin, Vol. XVIII, No. 4, April 1993.
[113] P. J. Grungy, E. T. M. Lacey, and C. D. Wright, J. Magn. Magn. Mater. 54-57, 227, 1986.
[114] F. Hellman and E. M. Gyorgy, Phys. Rev. Lett. 68, 1391, 1992.
[115] M. Mansuripur, J. Appl. Phys. 61, 1580, 1987.