簡易檢索 / 詳目顯示

研究生: 王聖裕
Sheng-Yu Wang
論文名稱: High-k材料Ba1-xSrxTiO3應用於閘極氧化層對白金奈米晶記憶體電性之影響
High-k dielectric Ba1-xSrxTiO3 as control oxide for nonvolatile Pt-nanocrystal memory
指導教授: 吳泰伯
Tai-Bor Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 鈦酸鍶鋇奈米晶記憶體白金高介電常數
外文關鍵詞: BST, nanocrystal, memory, Pt, high-k
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前快閃記憶體元件之原理乃是利用電子儲存於懸浮閘極中,藉由起始電壓的偏移來判別記憶與否。傳統懸浮閘極記憶元件是利用導電的複晶矽作為懸浮閘極的材料,當複晶矽形成之懸浮閘極若產生局部漏電將導致全面性的漏電問題。有鑑於此,利用已被廣泛研究的奈米晶結構來取代傳統的懸浮閘極,其中奈米晶粒彼此間擁有良好的絕緣等特性,故在漏電問題上,克服了傳統懸浮閘極全面漏電的危險。
    在實驗的部份,利用熱成長、磁控濺鍍與原子層化學氣相沉積法(ALCVD)成長穿隧氧化層-PtOx-閘極氧化層結構,再加以熱處理使PtOx以自組裝的方式還原成Pt奈米晶陣列,並製作成MOS結構,而對此MOS結構作有關C-V、I-V與retention的量測分析,得以確認奈米晶捕獲電荷的能力。
    本論文當中將探討閘極介電層材料結構的影響。此MOS電容可視為控制層電容Cco與穿隧層電容Cto串聯,由於奈米晶之充放電取決於穿隧層所受電壓,而此電壓Vto與施加於閘極的電壓Vg的關係為Vto=Vg.Cco/(Cco+Cto),因此在同樣的介電層厚度下,採用較高介電係數的控制層材料,對特定的Vto,所需的Vg較低,故有利於操作電壓的降低,同時也將比較不同閘極材料下,對於漏電流的影響,及對於侷限電子的持久性(retention)的比較。


    摘要 表目錄 圖目錄 第一章 序論……………………………………………………………1 第二章 文獻回顧………………………………………………………8 2.1 記憶體簡介………………………...……………………………….8 2.1.1 機械性記憶體………………………………………….………8 2.1.2 半導體記憶體…………………..………………………..…….8 2.1.2.1 揮發性記憶體…………………………….………..…..9 2.1.2.2 非揮發性記憶體……………..……………………….10 2.2 半導體記憶體市場架構…………………..…………………….. 11 2.2.1 半導體記憶體性能考量因素…………………...……………11 2.2.2 非揮發性半導體記憶體………………………...……………13 2.3 奈米晶記憶體……………………….……………………………15 2.3.1 半導體奈米晶記憶體的理論……………...…………………16 2.3.2 金屬奈米晶記憶體…………………………...………………17 2.3.3 其他奈米晶結構………………………………………...……18 2.3.3.1 雙層奈米晶……………………..……………………18 2.3.3.2 矽奈米晶在Oxide-Nitride 介電層中…………….…18 2.4 單電子記憶體………………………………………………….…19 2.4.1 單電子電晶體基本原理……………………………………...19 2.5 high-k材料於閘極氧化層的應用……………..…………………21 2.6 MOS元件………………………………………………………... 23 2.6.1 基本操作原理:累積、空乏、反轉……….……………………23 2.6.2 平帶電壓………………………………………….…………. 24 第三章 實驗流程…………………..…………………………………39 3.1 元件製作概述…………….………………………………………39 3.1.1 RCA Clean…………….…………………………..…………39 3.1.2 Back-side Ion Implantation….……………..………………..40 3.1.3 Dry Thermal Oxidation…………………..………….………40 3.1.4 PtOx薄膜……………………………………….……………40 3.1.5 閘極氧化層製作……………………...……………..………41 3.1.6 Pt奈米晶粒的製作…………………………...……..………41 3.1.7 電極製作………………..……………………………..…….42 3.2 分析與量測………………………….……………………………42 3.2.1 電性量測…………………………………...…………………42 第四章 high-k閘極氧化層Ba1-xSrxTiO3對於白金奈米晶記憶體電性 的影響……………………………………………………..…48 4.1 簡介……………………………………………….………………48 4.2 白金奈米晶粒的自組裝………………………………….………49 4.3 高介電常數材料閘極氧化層……………….……………………49 4.3.1 Ba1-xSrxTiO3簡介………………………………………….…..49 4.4 high-k材料BST閘極氧化層對白金奈米晶記憶體電性的影響與比較…………………………………………………………….…50 4.4.1從C-V量測中比較記憶特性…………….…………………....50 4.4.2電流對電壓的特性……………………….……………………53 4.4.3閘極電壓的影響……………………...…...……………...……55 4.4.4持久性量測…………………...………………......……………57 4.5 結論…………………………………………………………….…58 第五章 結論………………...…………………………………...……77 Reference……………………………………………………………….78 表目錄 附表2.1 各類型記憶體性能比較………………………………….…37 附表3.1 Sputtering conditions of the PtOx layer and gate oxide……..44 附表3.2 Annealing condition (Rapid Thermal Annealing)……...……44 附表3.3 Sputtering conditions of Pt top electrode………...….………44 圖目錄 第一章 圖1.1 快閃記憶體具備其他記憶體之優點分析………………….……5 圖1.2 全球快閃記憶體市場規模預估……………………………….…5 圖1.3 不同快閃記憶體類型之結構示意圖…………………………….6 圖1.4 SiO2/Si3N4/SiO2(SONOS)結構………………………………….6 圖1.5 奈米晶記憶體結構,懸浮閘極為奈米晶陣列…………………...7 第二章 圖2.1 記憶體分類概述…………………………………………….…..26 圖2.2 CMOS SRAM單元陣列……………………..…...…….……..27 圖2.3 一電容的DRAM單元等效電路……….………….……………27 圖2.4 快閃式單元之熱載子形式寫入:(a)快閃式記憶體單元結構加上一般寫入至單元所需的偏壓,MOSFET在飽和區時通道被夾止 (b)沿MOSFET通道中間垂直切線之能帶圖,顯示在通道中的熱載子通過閘極氧化層而陷入浮動閘極中………….…….28 圖2.5 Flowler-Nordhein穿隧擦拭:(a)快閃式記憶體單元結構,加上典型擦拭所需之偏壓 (b)對應MOSFET閘極/源極重疊區深度的能帶圖,顯示載子在浮動閘極發生量子力學穿隧進入氧化層,然後漂移至源極……………………………..…………..28 圖2.6 奈米晶記憶體側視圖………………………………….………..29 圖2.7 奈米晶記憶體發展圖表……………………………………..….29 圖2.8 Si奈米晶記憶體……………………………………………….30 圖2.9 由於電子或是電洞由基板注入奈米晶內造成一逆時針的遲滯曲線………………………………..……………………………30 圖2.10 由臨界電壓的改變看出電子或是電洞的trap….…………….31 圖2.11 在MOS結構中各種不同功函數的金屬奈米晶形成之能帶圖,其中以白金具有最大的功函數,而形成最深的位能井...31 圖2.12 在2000年,Toshiba提出雙層自組裝奈米晶記憶體 (a) nanodot charged (written) (b) nanodot uncharged (erased)…....………32 圖2.13 單電子電晶體的基本電路,除源極、汲極、閘極外,尚有一量子點,在量子點兩端則為極微小的穿透性接合…………..33 圖2.14 施以閘極電壓後的單電子電晶體等效電路示意圖……….…33 圖2.15 庫倫阻斷之IV特性,當電壓值介於負臨界電壓Vc=-e2/2C和正臨界電壓Vc=e2/2C時,電流值因電子被鎖住而為零,當電壓增加到大於臨界電壓Vc,能量障壁消除,而電子可穿隧能量障壁,而電流也因所施加的電壓而增加…………………..34 圖2.16 (a)階梯式臨界電壓 (b)導電性與閘極電壓的關係…..…….…34 圖 2.17 理想MOS結構的能帶圖:(a)平衡時 (b)負偏壓造成電洞堆積在P-type半導體表面 (c)正偏壓將電洞從P-type半導體表面推開,形成空乏區 (d)很大的正偏壓使P-type半導體表面形成反轉,也就是P-type半導體表面形成n型薄層….…..….35 圖2.18 強反轉開始時,半導體能帶的彎曲:表面電位φs是中性P-type材料中之φF值的兩倍………………………….…………….35 圖2.19負功函數電位差的影響:(a)在半導體表面處的能帶變曲及負電荷的形成 (b)加上一個負電壓,以達到平坦能帶……..….36 圖2.20 在p-type MOS結構當中Qi在C-V上的影響………..….……36 第三章 圖3.1 Schematic cross-section of the Pt nanocrystal nonvolatile memory in this research………………………………………………......45 圖3.2 實驗製作流程圖……………………………………………...…46 圖3.3 射頻濺鍍機系統示意圖…………………………………….…..47 圖3.4 元件電性量測與分析……………………………………...……47 第四章 圖4.1利用high-k材料BST取代閘極氧化層之白金奈米晶記憶體....60 圖4.2由XRD分析得知,控制閘極BST為非晶質(amorphous)………61 圖4.3 (a) BST空片的高頻(1MHz)C-V圖……………………………..61 (b) 控制閘極BST埋Pt晶粒(PtOx 15sec)高頻(1MHz)C-V圖…61 (c) 控制閘極BST埋Pt晶粒(PtOx 20sec)高頻(1MHz)C-V圖....62 (d) 控制閘極BST埋Pt晶粒(PtOx 25sec)高頻(1MHz)C-V圖....62 圖4.4(a)施加正偏壓時(反轉區) ……………………………………….63 (b)施加負偏壓時(累積區) 儲存電荷的機制…………..……….63 圖4.5(a)施加正偏壓時(寫入)電子由Si基板直接穿隧過穿隧氧化層,陷入白金氧粒子內的能帶圖…………………………..…....64 (b)施加負偏壓時(拭除),電子由白金奈米粒detrapping到Si基板,也可視為電洞穿隧過穿隧氧化層進入白金奈米粒子,能帶表示圖……………..…………………...……..……………65 圖4.6 (a)閘極氧化層BST的白金奈米晶記憶體漏電流對電壓圖…...66 (b)BST中埋入白金奈米晶粒的有無比較其漏電流對電壓圖....66 圖4.7 BST空片的漏電流對電壓變化圖 (a)累積區到反轉區…………………………………………….67 (b)反轉區到累積區,turn-around voltage均接近0V.…....…….67 圖4.8 BST閘極氧化層白金奈米晶(PtOx 15sec)記憶體漏電流對電壓圖 (a)由累積區到反轉區,有負的turn-ariund voltage……………68 (b)由反轉區到累積區,有正的turn-around voltage………...…68 圖4.9 BST閘極氧化層白金奈米晶(PtOx 20sec)記憶體漏電流對電壓圖(a)由累積區到反轉區,有負的turn-ariund voltage…………....69 (b)由反轉區到累積區,有正的turn-around voltage………...…69 圖4.10 BST閘極氧化層白金奈米晶(PtOx 25sec)記憶體漏電流對電壓(a)由累積區到反轉區,有負的turn-ariund voltage………...….70 (b)由反轉區到累積區,有正的turn-around voltage………...…70 圖4.11(a) BST閘極氧化層於白金奈米晶(PtOx 15sec)記憶體平帶電壓對閘極電壓變化圖………………………...……………….71 (b) BST閘極氧化層於白金奈米晶(PtOx 20sec)記憶體平帶電壓對閘極電壓變化圖…………………………………..……..71 (c) BST閘極氧化層於白金奈米晶(PtOx 25sec)記憶體平帶電壓對閘極電壓變化圖…………………………………..……..72 圖4.12庫倫阻塞效應…………………………………………………..73 圖4.13 (a)BST於白金奈米晶(PtOx 15sec)記憶體之持久性量測…….74 (b)BST於白金奈米晶(PtOx 20sec)記憶體之持久性量測…….74 (c)BST於白金奈米晶(PtOx 25sec)記憶體之持久性量測…….75 圖4.14 (a)氧化鋁閘極氧化層奈米晶記憶體的持久性量測………….76 (b)氧化鋯閘極氧化層奈米晶記憶體的持久性量測……...…..76

    1. TRI產業專業報告-11 席捲記憶體市場之未來新霸主-快閃記憶體 拓墣產業研究所 2004 六月
    2. 電子與材料雜誌 第24期 奈米電子元件:張鼎張、顏碩廷、劉柏村;單電子電晶體:胡淑芬
    3. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377 (1996).
    4. L. Guo, E. Leobandung, and S. Y. Chou, “A silicon single-electron transistor memory operating at room temperature”, Science 275, 649 (1997).
    5. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358 (1998).
    6. I. Kim, S. Han, K. Han, J. Lee, and H. Shin, “Room temperature single electron effects in a Si nanocrystal memory”, IEEE Electron Device Letters 20(12), 630 (1999).
    7. M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl. Phys. Lett. 82, 1787 (2003).

    8. B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez-Rodriguez, and J. R. Morante, ”The effect of additional oxidation on the memory characteristics of metal-oxide –semiconductor capacitors with Si nanocrystals”, Appl. Phys. Lett. 82, 4818 (2003).
    9. Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabricated by oxidation of Si1-xGex”, IEEE Trans. Electron Devices 48, 696 (2001).
    10. Y.-C. King, T.-J. King, and C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex”, IEDM Tech. Dig., 98 (1998).
    11. V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558 (2003).
    12. M. Kanoun and A. Souifi, “Electrical study of Ge-nanocrystal-based metal oxide-semiconductor structure for p-type nonvolatile memory applications”, Appl. Phys. Lett. 84, 5079 (2004).
    13. Ying Qian Wang, Jing Hao Chen, Won Jong Yoo, Yee-Chia Yeo, Sun Jung Kim, Rohit Gupta, and Zerlinda Y. L. Tan, ”Formation of Ge nanocrystals in HfAlO high-k dielectric and application in memory device”, Appl. Phys. Lett. 84, 5047 (2004).
    14. W. L. Liu, P. F. Lee, J. Y. Dai, J. Wang, H. L. W. Chan, and C. L. Choy, ”Self-organized Ge nanocrystals embedded in HfAlO fabricated by pulsed-laser deposition and application to floating gate memory”, Appl. Phys. Lett. 86, 013110 (2005).
    15. X. B. Lu, P. F. Lee, and J. Y. Dai, “Synthesis and memory effect study of Ge nanocrystals embedded in LaAlO3 high-k dielectrics”, Appl. Phys. Lett. 86, 203111 (2005).
    16. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—partⅠ:device design and fabrication”, IEEE Trans. Electron Devices 49, 1606 (2002).
    17. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—partⅡ:electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614 (2002).
    18. Jiun-Yi Tseng, Cheng-Wei Cheng, Sheng-Yu Wang, and Tai-Bor Wu, “Memory characteristics of Pt nanocrystals self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide-semiconductor structures”, Appl. Phys. Lett. 85, 2595 (2004).
    19. Zerlinda Tan, S. K. Samanta, Won Jong Yoo, and Sungjoo Lee, ”Self-assembly of Ni nanocrystals on HfO2 and N-assisted Ni confinement for nonvolatile memory application”, Appl. Phys. Lett. 86, 013107 (2005).
    20. Jong Jin Lee, Yoshinao Harada, Jung Woo Pyun and Dim-Lee Kwong, ”Nickel nanocrystal formation on HfO2 dielectric for nonvolatile memory device applications”, Appl. Phys. Lett. 86, 103505 (2005).
    21. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553 (1996).
    22. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232 (1996).
    23. N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209 (2000).
    24. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794 (2002).
    25. Jong Jin Lee, Xuguang Wang, Weiping Bai, Nan Lu, and Dim-Lee Kwong, “Theoretical and Experimental Investigation of Si Nanocrystal Memory Device With HfO2 High-k Tunneling Dielectric”, IEEE Trans. Electron Devices 50, 2067 (2003).
    26. Sangmoo Choi, Myungjun Cho, and Hyunsang Hwang, “Improved metal-oxide-nitride-oxide-silicon-type flash device with high-k dielectrics for blocking layer”, J. Appl. Phys. 94, 5408 (2003).
    27. T. C. Chang, S. T. Yan, C. H. Hsu, M. T. Tang, and J. F. Lee, “A distributed charge storage with GeO2 nanodots”, Appl. Phys. Lett. 84, 2581 (2004).
    28. Rohit Gupta, Won Jong Yoo, Yingqian Wang, Zerlinda Tan, Ganesh Samudra, Sungjoo Lee, Daniel S. H. Chan, and Kian Ping Loh, “Formation of SiGe nanocrystals in HfO2 using in situ chemical vapor deposition for memory applications”, Appl. Phys. Lett. 84, 4331 (2004).
    29. T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374 (1996).
    30. C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8. 18. 1 (2003).
    31. W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014 (2002).
    32. L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639 (2002).
    33. V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558 (2003).
    34. C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557 (2003).
    35. H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119 (1998).
    36. T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197 (2000).
    37. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Quantum confinement energy in nanocrystalline silicon dots from high-frequency conductance measurement”, J. Appl. Phys. 94, 7261 (2003).
    38. V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33 (2003).
    39. 半導體元件(solid state electronic devices), Ben G. Streetman. Sanjay Banerjee 吳孟奇,洪勝富,連振炘,龔正 譯
    40. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248 (1997).
    41. A. K. Sharma, “Semiconductor memories”, IEEE press, New Jersey, 1997.
    42. S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377 (1996).
    43. B. Prince, “Emerging Memories–Technologies and Trends” by Kluwer Academic Publishers, p. 133 (2002).
    44. T. Ohzone, T. Matsuda, and T. Hori, “Erase/write cycle test of n-MOSFET’s with Si-implanted gate-SiO2”, IEEE Trans. Electron Devices 43, 1374 (1996).
    45. K. W. Guarini, C. T. Black, Y. Zhang, I. V. Babich, E. M. Sikorski, and L. M. Gignac, “Low voltage, scalable nanocrystal flash memory fabricated by templated self assembly”, IEDM Tech. Dig., 541 (2003).
    46. S. J. Baik, S. Choi, U-In Chung, and J. T. Moon, “High speed and nonvolatile Si nanocrystal memory for scaled flash technology using highly field-sensitive tunnel barrier”, IEDM Tech. Dig., 545 (2003).
    47. R. Muralidhar, R. F. Steimle, M. Sadd, R. Rao, C. T. Swift, E. J. Prinz, J. Yater, L. Grieve, K. Harber, and B. Hradsky, “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory”, IEDM Tech. Dig., 601 (2003).
    48. G. Puzzilli, D. Caputo, and F. Irrera, “Fast and reliable tunnel programming of nanocrystal nonvolatile memories”, IEEE Trans. Electron Devices 51, 1205 (2004).
    49. J. K. Kim. H. J. Cheong, Y. Kim, J. Y. Yi, H. J. Bark, S. H. Bang, and J. H. Cho, “Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527 (2003).
    50. S. Tiwari, F. Rana, K. Chan, L. Shi, and H. Hanafi, “Single charge and confinement effects in nano-crystal memories”, Appl. Phys. Lett. 69, 1232 (1996).
    51. H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and long retention-time nano-crystal memory”, IEEE Trans. Electron Devices 43, 1553 (1996).
    52. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358 (1998).
    53. T. Hiramoto, “To fill the gap between Si-ULSI and nanodevices”, International Journal of High Speed Electronics and Systems 10 (1), 197 (2000).

    54. N. Takahashi, H. Ishikuro, and T. Hiramoto, “Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates”, Appl. Phys. Lett. 76, 209 (2000).
    55. M. Saitoh, E. Nagata, and T. Hiramoto, “Large memory window and long charge-retention time in ultranarrow channel silicon floating-dot memory”, Appl. Phys. Lett. 82, 1787 (2003).
    56. E. Kapetanakis, P. Normand, and D. Tsoukalas, “Room temperature single-electron charging phenomena in large-area nanocrystal memory obtained by low-energy ion beam synthesis”, Appl. Phys. Lett. 80, 2794 (2002).
    57. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—partⅠ:device design and fabrication”, IEEE Trans. Electron Devices 49, 1606 (2002).
    58. Z. Liu, C Lee, V. Narayanan, G. Pei, and E. C. Kan, “Metal nanocrystal memories—partⅡ:electrical and characteristics”, IEEE Trans. Electron Devices 49, 1614 (2002).
    59. C. Lee, A. Gorur-Seetharam and E. C. Kan, “Operational and reliability comparison of discrete-storage nonvolatile memories: advantages of single-and double-layer metal nanocrystals”, IEDM Tech. Dig., 557 (2003).
    60. C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Soc. Symp. Proc. 737, F8. 18. 1 (2003).
    61. W. K. Choi and W. K. Chim, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 80, 2014 (2002).
    62. L. W. Teo, W. K. Choi, W. K. Chim, V. Ho, C. M. Moey, M. S. Tay, C. L. Heng, Y. Lei, D. A. Antoniadis, and E. A. Fitzgerald, “Size control and charge storage mechanism of germanium nanocrystals in a metal-insulator-semiconductor structure”, Appl. Phys. Lett. 81, 3639 (2002).
    63. V. Ho, L. W. Teo, W. K. Choi, W. K. Chim, and M. S. Tay, “Effect of germanium concentration and tunnel oxide thickness on nanocrystal formation and charge storage/retention characteristics of a trilayer memory structure”, Appl. Phys. Lett. 83, 3558 (2003).
    64. V. Ho, M. S. Tay, C. H. Moey, L. W. Teo, W. K. Choi, W. K. Chim, C. L. Heng, and Y. Lei, “Electrical characterization of a trilayer germanium nanocrystal memory device”, Microelectronic Engineering 66, 33 (2003).
    65. H. Ishikuro and T. Hiramoto, “Influence of quantum confinement effects on single electron and single hole transistors”, IEDM Tech. Dig., 119 (1998).
    66. P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, in proceedings of the IEEE, number 8, p. 1248 (1997).
    67. R. Ohba, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEDM Tech. Dig., 313 (2000).
    68. I. Kim, “Room temperature single electron effects in Si quantum dot memory with oxide-nitride tunneling dielectrics”, IEDM Tech. Dig., 111 (1998).
    69. 半導體元件(solid state electronic devices), Ben G. Streetman. Sanjay Banerjee 吳孟奇,洪勝富,連振炘,龔正 譯
    70. 白金奈米晶粒於金屬-氧化物-半導體結構中對非揮發性懸浮閘極記憶體應用之研究,清華大學博士論文,曾駿逸博士
    71. C. Lee, A. Gorur-seetharam and E. C. Kan, Tech. Dig. Int. Electron Devices Meet, 557 (2003).
    72. Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, J. Appl. Phys. 84, 2358 (1998).
    73. T. Futatsugi et al, Fujitsu, 1998.
    74. 2002/12-11 工研院電子所 半導體元件技術組/先進元件技術部 奈米電子計劃簡介 鍾朝安
    75. J. B. Kim, D. R. Kwon, K. Chakrabarti, and Chongmu Lee, K. Y. Oh, J. H. Lee, “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 92, 2002.
    76. 化學氣相沉積二氧化鋯閘極介電薄膜的結構與電性之研究,清華大學博士論文,黃世賢博士
    77. 奈米級金粒子型單電子電晶體研發現況,胡淑芬,吳永俊.黃調元,劉如熹,葉儒林
    78. E. H. Nicollian and A. Goetzberger, Bell Syst. Tech. J. 46, 1005 (1967).
    79. S. Huang, S. Banerjee, R. T. Tung, and S. Oda, ”electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance-voltage measurement”, J. Appl. Phys. 93, 576 (2003).
    80. M. Dai, K. Chen, X. Huang, L. Wu, L. Zhang, F. Qiao, W. Li, and K. Chen, ”Formation and charging effect of Si nanocrystals in a-SiNz/a-Si/a-SiNx structures”, J. Appl. Phys, 95, 640 (2004).
    81. D. N. Kouvatsos, V. Ioannou-Sougleridis, A. G. Nassiopoulou, “Charging effects in silicon nanocrystals embedded in SiO2 films”, Materials science and Engineering B101, 270 (2003).
    82. S. Saha and S. B. Krupanidhi, “Large reduction of leakage current by graded-layer La doping in (Ba0.5, Sr0.5)TiO3 thin films”, Appl. Phys. Lett. 79, 111 (2001).
    83. Hong-Wen Wang, Siu-Wei Nien, and Kuok-Chuan Lee, “Enhanced tenability and electrical properties of barium strontium titanate thin films by gold doping in grains”, Appl. Phys. Lett. 84, 2874 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE