研究生: |
李盈慧 Lee, Ying-Hui |
---|---|
論文名稱: |
FocusClearTM於生物材料光學透明化之定量 Quantification of the optical-clearing effect of FocusClearTM solution |
指導教授: |
湯學成
Tang, Shiue Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | FocusClearTM 、膠原蛋白 、共軛焦顯微鏡 、甘油 、二甲基亞碸 、牛血清蛋白 |
外文關鍵詞: | FocusClearTM, Collagen, Confocal microscopy, Glycerol, Dimethyl sulfoxide, Bovine serum albumin |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Optical clearing provides a useful means to enhance photon penetration into turbid tissues such as skins for optical examination. However, the integration of optical clearing with high-resolution (□m-level) microscopy for in-depth tissue imaging remains a field under development. In the present study, we apply an aqueous optical-clearing solution, FocusClearTM, on opaque protein gels of bovine serum albumin (BSA) and collagen to demonstrate its optical-clearing effect by transmittance quantification and fluorescence detection. Two commonly used optical-clearing reagents, glycerol and dimethyl sulfoxide (DMSO), were used for comparison. Significant increases in transmittance for both gels immersed in FocusClearTM were observed in visible wavelengths while there were fewer enhancements in glycerol and DMSO. Confocal images of fluorescent beads in BSA and fibroblasts in collagen gels showed that the application of FocusClearTM resulted in stronger fluorescence signal and better resolution in comparison to the use of glycerol or DMSO as the optical-clearing reagent. In conclusion, the application of FocusClearTM not only enhanced light transmittance but also increased the fluorescence intensity that formerly diminished due to the opacity of biological samples. The results demonstrated that the optical-clearing effect of FocusClearTM was superior to that of glycerol and DMSO in in-depth confocal imaging.
光學透明化對於混濁不易透光的生物組織,如皮膚,可有效提升光線於組織的穿透度,對組織於光學顯微鏡的觀察有所助益。目前,光學透明化結合高解析度(~μm)顯微鏡的使用以獲得組織深處影像的技術尚未發展完全。本研究中,我們將一新型光學透明化水溶液-FocusClearTM,分別應用於不透明的蛋白質膠體,牛血清蛋白及膠原蛋白,藉由透光度的定量及內部螢光的偵測來展現FocusClearTM光學透明化的效果。其他兩種常用的光學透明化溶液,glycerol與dimethyl sulfoxide(DMSO)也應用於實驗中作為比較的依據。於可見光範圍,FocusClearTM的應用使兩種蛋白質膠體透光度皆大幅提升,而glycerol與DMSO的效果則不如FocusClearTM顯著。利用共軛焦顯微鏡觀察牛血清蛋白膠體內部螢光小球及膠原蛋白內部螢光纖維母細胞的螢光影像,可發現隨著掃描的深度增加,FocusClearTM與Glycerol及DMSO相較起來,其應用可使影像維持較強的螢光訊號強度及較高的解析度。整體而言,FocusClearTM可使生物樣本透光度大幅提升,進而提升樣本內部反射回來的螢光訊號,使樣本深處之清晰螢光影像也可得。FocusClearTM光學透明化的效果優於常用的Glycerol與DMSO,於生物影像的應用十分具有潛力。
[1] J. W. Lichtman and J. A Conchello, Fluorescence microscopy. Nat. Methods.
2005, 2(12), 910-919
[2] J. A. Conchello and J. W. Lichtman, Optical sectioning microscopy. Nat. Methods.
2005, 2(12), 920-931
[3] F. Helmchen and W. Denk, Deep tissue two-photon microscopy. Nat. Methods.
2005, 2(12), 932-940
[4] R. K. Wang, X. Xu, Y. He, and J. B. Elder, Investigation of optical clearing of
gastric tissue immersed with hyperosmotic agents. Journal of selected topics in
quantum electronics, 2003, 9(2),234-242
[5] X. Xu and R. K. Wang, The role of water desorption on optical clearing of
biotissue: Studied with near infrared reflectance spectroscopy. Med. Phys. 2003, 30(6), 1246-1253
[6] C. G. Rylander, O. F. Stumpp, T. E. Milner, N. J. Kemp, J. M. Mendenhall, and K.
R. Diller, Dehydration mechanism of optical clearing in tissue. J. biomed. Opt.,
2006, 11(4), 04117-1~7
[7] E. A. Genina, A. N. Bashkatov, A. A. Korobko, E. A. Zubkova, and V. V. Tuchin,
Optical clearing of human skin: comparative study of permeability and
dehydration of intact and photothermally perforated skin. J. biomed. Opt. 2008,
13(2), 021102-1~8
[8] A. T. Yeh, B. Choi, J. S. Nelson, and B. J. Tromberg, Reversible dissocation of
collagen in tissues. J. Invest. Dermatol. 2003, 121(6), 1332-1335
[9] J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh, Collagen solubility correlates
with skin optical clearing. J. biomed. Opt. 2006, 11(4), 040501-1~3
[10] A. T Yeh and J. Hirshburg, Molecular interactions of exogenous chemical agents
with collagen-implications for tissue optical clearing. J. biomed. Opt. 2006, 11(1), 014003-1~6
[11] J. Hirshburg, B. Choi, J. S. Nelson, and A. T. Yeh. Coorelation between collagen
solubility and skin optical clearing using sugars. Lasers Surg. Med., 2007, 39,
140-144
[12] G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, Use of osmotically active
agents to alter optical properties of tissue: Effects on the detected fluorescence
signal measured through skin. Lasers Surg. Med. 2001, 29, 213-220
[13] G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander ΙΙΙ and A. J. Welch, Use of an
agent to reduce scattering in skin. Lasers Surg. Med. 1999, 24, 133-141
[14] M. H. Khan, B. Choi, S. Chess, K. M. Kelly, J. McCullough, and J. S. Nelson,
Optical clearing of in vivo human skin: Implications for light-based diagnostic
imaging and therapeutics. Lasers Surg. Med. 2004, 34, 83-85
[15] B. Choi, L, Tsu, E. Chen, T. S. Ishak, S. M. Iskander, S Chess, and J. S. Nelson,
Determination of chemical agent optical clearing potential using in vitro human
skin. Lasers Surg. Med. 2005, 36, 72-75
[16] Z. Mao, D. Zhu, Y. Hu, X. Wen, and Z. Han, Influence of alcohol on the optical clearing effect of skin in vitro. J. Biomed. Opt. 2008, 13(2), 021104-1~6
[17] R. K. Wang, X Xu, V. V. Tuchin, and J. B. Elder, Concurrent enhancement of
imaging depth and contrast for optical coherence tomography by hyperosmotic
agents. J. Opt. Soc. Am. 2001, 18(7), 948-953
[18] J. Jiang, M. Boese, P. Turner, and R. K. Wang, Penetration kinetics of dimethyl
sulphoxide and glycerol in dynamic optical clearing of porcine slim tissue in
vitro by Fourier transform infrared spectroscopic imaging, J. Biomed. Opt. 2008,
13(2), 021105-1~7
[19] R. Cicchi, F. S. Pavone, D. Massi, and D. D. Sampson, Contrast and depth
enhancement in two-photon microscopy of human skin ex vivo by use if optical
clearing agents. Opt. Express. 2005, 13(7), 2337-2344
[20] I. V. Meglinski, A. N. Bashkatov, E. A. Genina, D.Y. Churmakov, and V. V.
Tuchin, The enhancement of confocal images of tissues at bulk optical
immersion. Laser Phys. 2003, 13(1), 65-69
[21] Babak Nemati (Inventor), Method and apparatus to enhance optical transparency
of biological tissues. 1998 (U.S. Pat. No. 6,219,575 B1)
[22] J Jiang, R. K. Wang, and K. XU, Controlling optical properties of bio-tissue by
the use of biocompatible hyperosmotic agents. Optics in tissue engineering and
regenerative medicine. 2007, 6439, 64390F-1~7
[23] R. K. Wang and V. V. Tuchin, Enhanced light penetration in tissue for high
resolution optical imaging technique by the use of biocompatible chemical
agents. J. X-Ray Sci. Techol. 2002, 10(3), 167-176
[24] V. V. Tuchin, A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, and N. A.
Lakodina, In vivo investigation of the immersion-liquid-induced human skin
clearing dynamics. Tech. Phys. Lett. 2001, 27(6), 489-490
[25] M. G. Ghosn, E. F. Carbajal, N. A. Befrui, V. V. Tuchin, and K. V. Larin,
Differential permeability rate and percent clearing of glucose in different regions
in rabbit sclera. J. Biomed. Opt., 2008, 13(2), 021110-1~6
[26] Ann-Shyn Chiang (Inventor), Aqueous tissue clearing solution. 2002 (U.S. Pat.
No. 6,472,216 B1)
[27] Y. C. Liu and A. S Chiang, High-resolution confocal imaging and
three-dimensional rendering. Methods 2003; 30: 86-93
[28] H. S. Sakhalkar, M. Dewhirst, T. Oliver, Y Cao and M. Oldham, Functional
imaging in bulk tissue specimens using optical emission tomography:
fluorescence preservation during optical clearing. Phys. Med. Biol. 2007, 52,
2035-2054
[29] D. A. Benaron, W. F. Cheong, and D. K. Stevenson, Tissue optics. Science 1997,
276, 2002-2003
[30] R. Yuste, Fluorescence microscopy today. Nat. Methods. 2005, 2(12), 902-904