簡易檢索 / 詳目顯示

研究生: 曾耀德
論文名稱: 離散型式的軟體可靠度模型應用
A discrete software reliability model with applications
指導教授: 張延彰
洪文良
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 26
中文關鍵詞: 冪穩定模型離散型軟體可靠度貝氏理論馬可夫性質
外文關鍵詞: Power Steady Model, discrete software reliability models, Bayes' theorem, Markovian property
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軟體可靠度對於軟體品質的好壞扮演著重要的角色。經由軟體可靠度我們可以評估軟體故障間隔時間,也能夠有效控制其開發成本,特別在軍事、醫學和航空上的使用更是不可或缺。本文中我們採用離散型貝氏理論且具馬可夫性質,並整合冪穩定模型性質來探討對軟體發生故障時間的預測效果,最後與一些常見的軟體可靠度模型進行實際數據比較,結果也顯示,我們的模型預測效果為最佳。


    Software quality plays a very important role in software reliability. By using software reliability, we can estimate an interval time at software failure. On the other hand, we can control costs in these produces. Especially, software reliability is indispensable in the military, medical, aviation. In this research, we adopt a discrete model from Bayes'theorem with using Markovian property. We also integrate Power Steady Model to forecast time at failure of software. And then we compare with some of common software reliability models. The result show that our model is the better than the others.

    第一章 序論..........................................1 第二章 文獻探討......................................3 2.1 Jelinski-Moranda Model.......................3 2.2 A generalized JM model.......................3 2.3 C&S Model....................................4 2.4 The truncated Goel-Okumoto model.............5 第三章 模型概念與模型假設.............................7 3.1 模型概念與應用.................................7 3.1.1 模型想法...................................7 3.1.2 冪穩定模型.................................8 3.2 模型假設......................................8 3.3 模型的相關性質與參數估計.......................10 第四章 數值範例.....................................15 第五章 結論.........................................20 參考文獻............................................21

    [1]Chang,Y.C. and Liu,C.T. (2009). A generalized JM model with applications to imperfect debugging in software reliability. Applied Mathematical Modelling,33,3578–3588.
    [2]Cai,K.Y. (2000). Towards a conceptual framework of software run reliability modeling. Information Sciences,126,137 ±163.
    [3]Smith,J.Q. (1979). A Generalization of the Bayesian Steady Forecasting Model. J.R.Statist.Soc.B,41,No.3,pp.375-387.
    [4]Chen,Y. and Singpurwalla,N.D. (1994). A non-Gaussian Kalman filter model for tracking software reliability. Statistica Sinica,4,535-548.
    [5]Grottke,M. and Trivedi,K.S.(2004). On a Method for Mending
    Time to Failure Distributions. Department of Electrical & Computer Engineering Duke University Durham, NC 27708-0291, USA.
    [6]Grunwald,G.K. and Guttorp,P. and Raftery,A.E(1993).
    Predicition Rules for Exponential Family State Space Models. J.R.Statist.Soc.B,55,No.4,pp.937-943.
    [7]Jelinski,Z. and Moranda,P.B.(1972). Software Reliability Research. Statistical Computer Performance Evaluation,Ed. W.Freiberger,Academic Press,New York,465-497.
    [8]Langberg,N. and Singpurwalla,N.D.(1985). A Unification of Some Software Reliability Models. SIAM J. Scientific and Statistcal Computation, 6, 781-790.
    [9]Littlewood,B. and Verrall,J.L.(1973). A Bayesian Reliability Growth Model for Computer Software. J. Roy. Statist. Soc. Ser. C, 22(3), 332-346.
    [10]Littlewood,B. and Verrall,J.L.(1974). A Bayesian Reliability Model with a Stochastically Monotone Failure Rate. IEEE Trans. Reliability. R-23(2),108-114.
    [11]Geol,A.L. and Okumoto,K.(1979). Time-Dependent Error- Detection Rate Model for Software Reliability and other Performance Measures. IEEE Trans.Reliability,R-28(3),206-211.
    [12]百度百科網站: http://baike.baidu.com/view/830043.htm#sub830043
    [13]維基百科網站:
    http://en.wikipedia.org/wiki/Markov_property

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE