簡易檢索 / 詳目顯示

研究生: 廖啟翔
Liao, Chi-Hsiang
論文名稱: A High-Throughput-Rate FFT Processor for OFDM based WPAN/WLAN Applications
適用於以正交分頻多工為基礎無線個人網路與無線區域網路系統之高輸出率快速傅立葉轉換
指導教授: 張慶元
Chang, Tsin-Yuan
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 69
中文關鍵詞: 快速傅立葉轉換無線個人網路無線區域網路座標軸數位旋轉計算器
外文關鍵詞: FFT, WPAN, WLAN, CORDIC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In nowadays, Fast Fourier Transform (FFT) is widely used in wireless communications applications such as wireless personal area network (WPAN) and wireless local area network (WLAN). WPAN which provides the ultra-high data transmission for short distance is defined by IEEE 802.15.3c Task Group. WLAN based on IEEE 802.11 standard and the standard of IEEE 802.11n improves previous 802.11 standards by adding multiple-input multiple-output (MIMO) technique.
    In this thesis, we propose a high-throughput-rate FFT processor that supports WPAN and WLAN applications. The COordinate rotation digital computer (CORDIC) with unrolling simplification and compensation scheme is proposed to lower the hardware cost and power consumption. A multi-data scaling method is adopted to efficiently maintain the same word-length. Moreover, a double-edged triggered constant based multiplier unit is proposed to avoid conflict when supporting WLAN application. The proposed FFT processor is implemented in UMC 90-nm 1P9M process, whose core area is 0.829 mm2 and power consumption is 93.9 mW, 85.95 mW, 67.98 mW and 7.2 mW when performing 512-point FFT, 256-point FFT, 128-point FFT and 4-path 128-point FFT in WPAN and WLAN application, respectively.


    現今,快速傅立葉轉換被廣泛使用在無線通訊應用,如無線個人網路(WPAN)和無線區域網路(WLAN)。無線個人網路(WPAN)標準是由IEEE 802.15.3c工作小組制定的,其目標為能短距離提供超高速資料傳輸。無線區域網路(WLAN)建立在 IEEE 802.11標準上,其中IEEE 802.11n藉由支援多重輸入多重輸出技術改善了以往的標準。
    在本論文中,提出了一個擁有高輸出率且可同時支援WPAN和WLAN應用之快速傅利葉轉換處理器。一個座標軸數位旋轉計算器(CORDIC)結合展開硬體簡化和補償電路機制被提出以降低面積和功率消耗。另外,一個多資料進位(Multi-data scaling)方法被引用以能夠有效率的維持相同點數。再者,一個以常數乘法為基礎之雙緣觸發乘法單元被提出來避免當操作於WLAN應用時發生的硬體衝突。我們使用UMC 90-nm 1P9M製程實現所提出的處理器,其面積為0.829 mm2,且消耗功率為93.9 mW、85.95 mW、67.98 mW 和 7.2 mW 當分別執行WPAN和WLAN應用下之512點、256點、128點和4條路徑128點之快速傅利葉轉換。

    中文摘要...................................................I Abstract..................................................II 致謝.....................................................III Contents..................................................IV List of Figures...........................................VI List of Tables............................................IX Chapter 1 Introduction.....................................1 1.1 Introduction...........................................1 1.2 Previous Work..........................................3 1.3 Motivation.............................................5 1.4 Thesis Organization....................................6 Chapter 2 FFT/IFFT Algorithm...............................7 Chapter 3 Proposed FFT Architecture.......................13 3.1 Overview of proposed FFT processor....................13 3.2 Module 1..............................................15 3.2.1 Multi-Data Scaling in Module 1......................17 3.2.2 Fixed Width Canonic Signed Digit (CSD) Multiplier...19 3.2.3 16-based twiddle factor multiplication..............21 3.3 Module 2..............................................23 3.3.1 Previous work.......................................23 3.3.2 Twiddle Factor Mapping..............................25 3.3.3 COordinate Rotation Digital Computer (CORDIC) algorithm ...27 3.3.4 CORDIC algorithm with twiddle factor mapping.......29 3.4 Module 3.............................................41 3.5 Module 4.............................................43 3.6 Module 5.............................................50 3.7 Other Specification in WPAN Mode.....................51 3.8 Implementation In WLAN Mode..........................52 Chapter 4 Simulation Result..............................61 4.1 Simulation Result....................................61 4.2 Comparisons..........................................64 Chapter 5 Conclusions....................................66 Reference ................................................67

    [1]“Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs),” IEEE Draft P802.15.3c/D08, Mar. 2009.
    [2]S. He and M. Torkelson, “Designing pipeline FFT processor for OFDM (de)modulation,” in Proc. URSI Int. Symp. Signals, Systems, and Electronics, vol. 29, pp. 257-262, Oct. 1998.
    [3]Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE Journal of Solid-State Circuits, vol. 40, no. 8, pp. 1726-1735, Aug. 2005.
    [4]Minhyeok Shin and Hanho Lee, “A high-speed four-parallel radix-24 FFT/IFFT processor for UWB applications,” in Proc. IEEE Inter. Symp. on Circuits and Systems, pp. 960-963, May 2008.
    [5]Liang Liu, Junyan Ren, Xuejing Wang and Fan Ye, “Design of Low-Power, 1GS/s Throughput FFT Processor for MIMO-OFDM UWB Communication System,” in Proc. IEEE Int. Symp. on Circuits and Systems (ISCAS), pp. 2594-2597, May 2007.
    [6]H.-Y. Lee and I.-C. Park, “Balanced Binary-Tree Decomposition for Area-Efficient Pipelined FFT Processing,” IEEE Trans. on Circuits and Systems, Part-I : Regular Papers, vol. 54, no. 4, pp. 889–900, Apr. 2007.
    [7]S.-N. Tang, J.-W. Tsai and T.-Y. Chang, “A 2.4-GS/s FFT Processor for OFDM-Based WPAN Applications,” in Proc. IEEE Trans. on Circuits and Systems, Part-II: Express Briefs, vol. 57, pp. 451-455, May 2010.
    [8]S.-M. Kim, J.-G. Chung and K. K. Parhi, “Low error fixed-width CSD multiplier with efficient sign extension,” IEEE Trans. on Circuits and Systems, Part-II: Analog and Digital Signal Processing, vol. 50, no. 3, pp. 984–993, Dec. 2003.
    [9]J. E. Volder, "The CORDIC Trigonometric Computing Technique," IEEE Trans. on Electronic Computers, vol. EC-8, pp. 330-334, Sep. 1959.
    [10]J. S. Walther, “A unified algorithm for elementary functions,” in Proc. Joint Spring Computer Conf., pp. 397-385, 1971.
    [11]J. Tso-Bing, S. Hsiao, and M. Tsai, "Para-CORDIC: parallel CORDIC rotation algorithm," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 51, pp. 1515-1524, Aug. 2004.
    [12]K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A. Troya, "Modified virtually scaling-free adaptive CORDIC rotator algorithm and architecture," IEEE Trans. on Circuits and Systems for Video Technology, vol. 15, pp. 1463-1474, Nov. 2005.
    [13]M. G. B. Sumanasena, "A Scale Factor Correction Scheme for the CORDIC Algorithm," IEEE Transactions on Computers, vol. 57, pp. 1148-1152, June 2008.
    [14]R. Andraka, A survey of CORDIC algorithm for FPGA based computers, ACM Press, 1998 New York, NY, USA.
    [15]L. Vachhani, K. Sridharan, Pramod K. Meher, "Efficient CORDIC Algorithms and Architectures for Low Area and High Throughput Implementation," IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 56, pp. 61-65, Jan. 2009.
    [16]Y.-H. Cheng, C.-Y. Li and T.-Y. Chang,” High Throughput DA-Based DCT Witt High Accuracy Error-Compensated Adder Tree,” Accepted by IEEE Trans. on Very Large Scale Integration (VLSI) Systems.
    [17]C.-M. Chen, C.-C. Hung and Y.-H. Huang, "An Energy-Efficient Partial FFT Processor for the OFDMA Communication System," IEEE Trans. on Circuits and Systems II, vol. 57, pp. 136-140, Feb. 2010.
    [18]C. Yuan, Y.-W. Lin, Y.-C. Tsao and C.-Y. Lee, "A 2.4-Gsample/s DVFS FFT Processor for MIMO OFDM Communication Systems," IEEE Journal of Solid-State Circuits, vol. 43, pp. 1260-1273, May 2008.
    [19]Z. Guichang, F. Xu and A. N Willson, "A power-scalable reconfigurable FFT/IFFT IC based on a multi-processor ring," IEEE Journal of Solid-State Circuits, vol. 41, pp. 483-495, Feb. 2006.
    [20]“CIC Referenced Flow for Cell-based IC Design”, Technical Report, CIC-DSD-RD-08-01, V1.0, National Chip Implementation Center, Hsinchu, Taiwan, May, 2008.
    [21]“FOD0A_B33_T33_Generic_IO Application Note”, Faraday Cell-based Design Kit for UMC 90nm, Jan. 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE