研究生: |
瑞吉 Sahani, Rajkumar Lalji |
---|---|
論文名稱: |
透過原子經濟性反應以金金屬催化炔類成官能基多樣化雜環 Gold-catalyzed Transformations of Alkynes into Highly Functionalized Heterocycles via Atom-economy Process |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
鄭建鴻
Cheng, Chien-Hong 黃國柱 Hwang, Kuo Chu 莊士卿 Chuang, Shih-Ching 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 793 |
中文關鍵詞: | 金金屬催化反應 、同相金金屬催化 、雜環合成 、和環反應 、還化反應 、有機轉換反應 |
外文關鍵詞: | Gold-catalyzed reaction, Homogeneous gold-catalysis, Heterocycle synthesis, Annulation reaction, Cyclization reaction, Organic transformation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文描述利用金和銀催化劑發展新的有機催化反應。利用這些金屬可以促使反應以易於取得的起始物經由溫和、具選擇性且有效率地進行轉換並獲得雜環產物。本論文共分為四章以利於理解。
第一章是利用炔酰胺與疊氮烯或2H-氮丙啶藉由金催化環加成能得到三類產物,分別為[3 + 2] - 或[4 + 3] - 環加成產物。當用具有酯基的烷基(或氫)取代Cβ-取代基-2H-氮丙啶時,炔酰胺與2H-氮丙啶物質的環加成反應能產生兩個區域選擇性的吡咯產物。 對於具豐電子的苯基取代基之炔酰胺,它們與疊氮烯能進行新穎的[4 + 3] - 環加成反應進行,並得到1H-苯並[d]-氮雜產物。
第二章是利用環氧化物或氧雜環丁烷能和丙炔酸叔丁酯衍生物順利進行金催化環化反應[4 + n]-(n = 3,4),並有效地產生七或八元環氧產物。 在[4 + 3]環化反應中,產物分析顯示環氧化物進行分子內SN2攻擊後依然能保留立體化學。我們還發現了一種由叔丁基丙酸酯與γ-內酯進行[4 + 5]環化反應,以表示此反應能用於中等大小的環類化合物。
於第三章我們開發了兩個新的藉由金催化對異噁唑與丙炔酸酯進行環化反應。大多數異噁唑會直接對炔進行間位攻擊而得到[4 + 1]-環化產品;該過程會導致丙炔酸酯容易進行炔裂解。無取代的異噁唑能進行具區域選擇性的氮原子攻擊得到[2 + 2 + 1] / [4 + 2]-環化產物。我們假設這兩個反應會先分別行成七元雜環中間體,在進行反應得到產物。
於第四章我們得到了一個新的藉由金催化對鄰氨基苯與丙酸鹽進行環化反應。大部分鄰氨基苯與丙酸鹽都會遵循氧原子攻擊路徑而得到[4 + 2] / [4 + 1]環化而得到環氧乙烯 [2,3-c]喹啉-2-羧酸酯產物,有些具有電子富集取代基的丙炔酸酯和鄰氨基苯甲酸能得到喹諾酮和喹啉-4(1H)-酮衍生物,是藉由它們相應的氧化烯[2,3-c]喹啉-2-羧酸酯進行重排而得。使用Au(I)和Zn(II)進行中繼催化,也可以將鄰氨基苯和丙炔酸酯進行一鍋反應合成高含氧四氫喹啉。
This dissertation describes development of new synthetic organic transformation using gold and silver catalysts. The use of these metals enable mild, selective and efficient transformation to give a range of heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter one is comprised of Gold-catalyzed cycloadditions of ynamides with azidoalkenes or 2H-azirines to give [3+2]- or [4+3]-cycloadducts in three classes. Cycloadditions of ynamides with 2H-azirine species afford pyrrole products in two regioselectivities, when the Cβ-substituent 2H-azirine is replaced from an alkyl (or hydrogen) with an ester group. For ynamides substituted with an electron-rich phenyl group, their reactions with azidoalkenes proceed through novel [4+3]-cycloadditions to deliver 1H-benzo[d]-azepine products instead.
Chapter two is comprised of Gold-catalyzed [4+n]-annulations (n = 3, 4) of tert-butyl propiolate derivatives with epoxides or oxetanes to yield seven- or eight-membered oxacyclic products efficiently. In the context of the [4+3]-annulations, product analysis reveals a retention of stereochemistry in an intramolecular SN2 attack of an epoxide. We also report a [4+5]-annulation between one tert-butyl propiolate and γ-lactol, to manifest the utility toward medium-sized rings.
Chapter three is comprised of development of two new gold-catalyzed annulations of isoxazoles with propiolates. Most isoxazoles follow an initial O-attack at alkynes to afford [4+1]-annulation products; this process results in a remarkable alkyne cleavage of initial propiolates. Unsubstituted isoxazoles proceed through a N-attack regioselectivity to yield formal [2+2+1]/[4+2]-annulation products. We postulate that these two annulation products arise initially from two seven-membered heterocyclic intermediates, further preceding to products.
Chapter four is comprised of a distinct gold-catalyzed annulation between anthranils and propiolates. Most of anthranils and propiolates follow a O-attack pathway to enable [4+2]-annulations, yielding oxireno[2,3-c]quinoline-2-carboxylates; Some propiolates and anthranils having electron rich substitutions resulted in quinolone and quinolin-4(1H)-one derivatives. One-pot synthesis of highly oxygenated tetrahydroquionolines from anthranils and propiolates is also achived through relay catalysis with Au(I) and Zn(II) catalysts.
1.1. Chapter 1:
[1] Liming Zhang, Acc. Chem. Res., 2014, 47, 877-888.
[2] Reviews on gold catalyzed reactions; (a) A. Das, S. M. A. Sohel, R.-S. Liu, Org. Biomol. Chem., 2010, 8, 960-979; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) N. T. Patil, Y. Yamamoto, Chem, Rev. 2008, 108, 3395-3442;(d) G. Abbiati, E. Rossi, Beilstein J. Org. Chem. 2014, 10, 481-513; (e) J. S. Alford, H. M. L. Davies, Chem. Soc. Rev., 2014, 43, 5151-5162; (f) A. S. K. Hashmi, Gold Bulletin 2003, 36, 3-9; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333-346; (h) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (i) A. Acardi, Chem. Rev. 2008, 108, 3266-3325; (j) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221.
[3] (a) C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-F. Ping, X. Lu, L.-W. Ye, J. Am. Chem. Soc. 2015, 137, 9567-9570; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244-9245; (c) M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468-13471; (d) G. H. Lonca, C. Tejo, H. L. Chan, S. Chiba, F. Gagosz, Chem. Commun., 2017, 53, 736-739.
[4] (a) N. D. Shapiro, Y. Shi, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 11654-11655; (b) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2008, 130, 9244-9245; (c) H. Kusama, Y. Miyashita, J. Takaya, N. Iwasawa, Org. Lett., 2006, 8, 289-292.
[5] (a) N. Martin, P. W. Davies, Org. Lett., 2009, 11, 2293-296; (b) X. Zhao, E. Zhang, Y.-Q. Tu, Y.Q. Zhang, D.-Y. Yuan, K. Cao, C.-A. Fan, F.-M. Zhang, Org. Lett., 2009, 11, 4002-4004; (c) S. Zhang, C. Shan, S. Zhang, L. Yuan, J. Wang, C.-H. Tung, L.-B. Xing, Z. Xu, Org. Biomol. Chem., 2016, 14, 10973-10980.
[6] (a) S. N. Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 5444-5448; (b) S. N, Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072-9076; (c) Y.-L. Chen, P. Sharma, R.-S. Liu, Chem. Commun., 2016, 52, 3187-3190.
[7] (a) P. W. Neber, K. Hartung, W. Ruopp, Chem. Ber. 1925, 58, 1234. (b) W. F. Berkowitz, Org. React. 2011, 78, 321-410.
[8] (a) C. Gronnier, G. Boissonnat, F. Gagosz, Org. Lett., 2013, 15, 4234-4237; (b) A. Wetzel, F. Gagosz, Angew. Chem. Int. Ed. 2011, 50, 7354-7358; (c) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang, L. Zhang, Angew. Chem. Int. Ed. 2011, 50, 8358-8362; (d) Z.-Y. Yan, Y. Xiao, L. Zhang, Angew. Chem. Int. Ed. 2012, 51, 8624-8627.
[9] M. S. Nechaev, V. M. Rayon, G. Frenking, J. Phys. Chem. A 2004, 108, 3134-3142.
[10] (a) M. J. S. Dewar, Bull. Soc. Chim. Fr. 1951, 18, C71-C79; (b) J. Chatt, L. A. Duncanson, J. Chem. Soc. 1953, 2939-2947; (c) J. H. Nelson, K. S. Wheelock, L. C. Cusachs, H. B. Jonassen, J. Am. Chem. Soc. 1969, 91, 7005-7008.
[11] M. S. Novikov, A. F. Khlebnikov, Tetrahedron, 2013, 69, 3363-3401.
[12] K. Isomura, S. Kobayashi, H. Taniguchi, Tetrahedron Lett. 1968, 9, 3499-3502.
[13] H. Alper, J. E. Prickett, J. Chem. Soc., Chem. Commun. 1976, 483.
[14] D. F. Taber, W. Tian, J. Am. Chem. Soc. 2006, 128, 1058-1059.
[15] Y. Jiang, W. C. Chan, C.-M. Park, J. Am. Chem. Soc. 2012, 134, 4104-4107.
[16] Z. Rappoport, J. F. Liebman, The chemistry of hydroxylamines, oxime and hydroxamic acids; Wiley: Hoboken, NJ, 2008; Vol. 2.
[17] (a) K. Banet, In organic Azides; John Wiley & Sons, Ltd: Chichester, U.K., 2010; p 113. (b) A. Sjoholm Timen, E. Risberg, P. Somfai, Tetrahedron Lett. 2003, 44, 5339.
[18] A. Padwa, J. Smolanoff, A. Tremper, J. Am. Chem. Soc. 1975, 97, 4682-4691.
[19] H.-D. Xu, H. Zhou, Y.-P. Pan, X.-T. Ren, H. Wu, M. Han, R.Z. Han, M.-H. Shen, Angew. Chem. Int. Ed. 2016, 55, 2540-2544.
[20] A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 2014, 53, 4959-4963.
[21] L. Jin, Y. Wu, X. Zhao, J. Org. Chem. 2015, 80, 3547-3555.
[22] N. S. Y. Loy, A. Singh, C.-M. Park, Angew. Chem. Int. Ed. 2013, 52, 2212-2216.
[23] N. S. Y. Loy, S. Kim, C.-M. Park, Org. Lett. 2015, 17, 395-397.
[24] Y. Wang, X. Lei, Y. Tang, Chem. Commun., 2015, 51, 4507-4510.
[25] J. Xuan, X.-D. Xia, T.-T. Zeng, Z.-J. Feng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 5653-5656.
[26] T. Li, X. Xin, C. Wang, D. Wang, F. Wu, X. Li, B. Wan, Org. Lett. 2014, 16, 4806-4809.
[27] T. Li, H. Yan, X. Li, C. Wang, B. Wan, J. Org. Chem. 2016, 81, 12031-12037.
[28] T. Li, F. Xu, X. Li, C. Wang, B. Wan, Angew. Chem. Int. Ed. 2016, 55, 2861-2865.
[29] L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett, 2015, 17, 30-33.
[30] For metal-catalyzed cycloaddition reactions, see selected reviews: (a) P. A. Wender, V. A. Verma, T. H. Paxton, Acc. Chem. Res. 2008, 41, 40-49; (b) M. Lautens, W. Klute, W. Tam, Chem. Rev. 1996, 96, 49-92; (c) P. A. Inglesby, P. A. Evans, Chem. Soc. Rev. 2010, 39, 2791-2805; (d) S. M. A. Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281; (e) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180–3211; (f) F. López, J. L. Mascareñas, Beilstein J. Org. Chem. 2011, 7, 1075–1094; (g) C. Aissa In Comprehensive Organic Synthesis II, P. Knochel; G. A. Molander Eds., 5.35, pp 1738-1771; (h) J. L. Mascareńas; G. F. Lopez In Comprehensive Organic Synthesis II, P. Knochel; G. A. Molander Eds., 5.13, pp 595-655.
[31] (a) The Chemistry of the Azido Group (Ed.: S. Patai), Wiley, New York USA, 1971; (b) The Chemistry of Halides, Pseudo-halides and Azides, Supplement D, (Eds.: S. Patai, Z. Rappoport), Wiley, Chichester UK 1983; (c) Chemistry of Halides, Pseudo-Halides and Azides, Part 1 (Ed.: S. Patai), Wiley, Chichester UK, 1995; (d) Azides and Nitrenes -Reactivity and Utility (Ed.: E. F. V. Scriven), Academic Press, New York USA, 1984; (e) S. Brase, C. Gil, K. Knepper, V. Zimmerman, Angew. Chem. Int. Ed. 2005, 44, 5188-5240, Angew. Chem. 2005, 117, 5320-5374.
[32] (a) S. Chiba, Synlett, 2012, 23, 21-44; (b) Y. –F. Wang, S. Chiba, J. Am. Chem. Soc. 2009, 131, 12570; (c) Y. –F. Wang, K. K. Toh, S. Chiba, Org. Lett. 2008, 10, 5019; (d) S. Chiba, Y. –F. Wang, G. Lapointe, K. Narasaka, Org. Lett. 2008, 10, 313. (e) N. S. Y. Loy, A. Singh, X. Xu, C.-M. Park, Angew. Chem. Int. Ed. 2013, 52, 2212-2216; (f) N. S. Y. Loy, S. Kim, C.-M. Park, Org. Lett. 2015, DOI: 10.1021/ol5034173.
[33] (a) E. C. Taylor, R. O. Kan, W. W. Paudler, J. Am. Chem. Soc. 1961, 83, 4484-4485; b) X. Zhu, Y. –F. Wang, S. Chiba, Chem. Asian J. 2014, 9, 2458-2462.
[34] (a) A. S. Timen, E. Risberg, P. Somfai, Tetrahedron Lett. 2003, 44, 5339; b) B. C. G. Soderberg, Curr. Org. Chem. 2000, 4, 727; c) D. Knittel, Synthesis, 1985, 186.
[35] Y. -F. Wang, K. K. Toh, J. -Y. Lee, S. Chiba, Angew. Chem. Int. Ed. 2011, 50, 5927-5931.
[36] For metal-catalyzed transformations of 2H-azirines into pyrrole products, see selected examples ref 15, 25 and: a) P. F. dos S. Filho, U. Schuchardt, Angew. Chem. Int. Ed. 1977, 16, 647-648, Angew. Chem. 1977, 89, 672-673; b) S. Chiba, Y. -F. Wang, G. Lapointe, K. Narasaka, Org. Lett. 2008, 10, 313-316; c) A. F. Khlebnikov, M. V. Golovkina, M. S. Novikov, D. S. Yufit, Org. Lett. 2012, 14, 3768-3771; d) X. Qi, X. Xu, C.-M. Park, Chem. Commun. 2012, 48, 3996-3998.
[37] X-ray crystallographic data of compounds 1-3b was deposited at Cambridge Crystallographic Data Center: 1-3b (CCDC 1044445)
[38] (a) J. Dieker, R. Frohlich, E.-U. Würthwein, Eur. J. Org. Chem. 2006, 5339-5356; b) D. A. Klumpp, Y. Zhang, M. J. O’Connor, P. M. Esteves, L. S. de Limeida, Org. Lett. 2007, 9, 3085-3088.
[39] (a) Compound (1-1a)-(1-1n): A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad, R. -S. Liu, J. Am. Chem. Soc. 2011, 133, 15372-15375; (b) R. B. Dateer, B. S. Shaibu, R. -S. Liu, Angew. Chem. Int. Ed. 2012, 51, 113-117; (c) S. N. Karad, S. Bhunia, R. -S. Liu, Angew. Chem. Int. Ed. 2012, 51, 8722-8726; (d) S. A. Gawade, D. B. Huple, R. -S. Liu, J. Am. Chem. Soc. 2014, 136, 2978-2981.
[40] (a) Compounds (1-2a)-(1-2f): M. M. H. Verstappen, G. J. A. Ariaans, B. Zwanenburg, J. Am. Chem. Soc. 1996, 118, 8491-8492; (b) N. S. Y. Loy, A. Singh, X. Xu, C. -M. Park, Angew. Chem. Int. Ed. 2013, 52, 2212-2216. (c)
[41] N. S. Y. Loy, S. Kim, C.-M. Park, Org. Lett. 2015, 17, 395-397.
1.2. Chapter 2:
[1] For a review, see: (a) G. Rousseau, Tetrahedron 1995, 51, 2777-2849; For other examples of natural products containing medium-ring lactones, see: (b) S. Sang, X. Cheng, H. Fu, D. Shieh, N. Bai, K. Lapsley, R. E. Stark, R. T. Rosen, C. Ho, Tetrahedron Lett. 2002, 43, 2547-2549; (c) M. Tsoukatou, H. Siapi, C. Vagias, V. Roussis, J. Nat. Prod. 2003, 66, 444-446; (d) A. Bermejo, J. R. Tormo, N. Cabedo, E. Estornell, B. Figadere, D. Cortes, J. Med. Chem. 1998, 41, 5158-5166.
[2] For reviews on the formation of medium- and large-sized lactones, see: (a) A. Parenty, X. Moreau, J.-M. Campagne, Chem. Rev. 2006, 106, 911-939; (b) I. Shiina, Chem. Rev. 2007, 107, 239 –273.
[3] For examples of RCM approaches to the synthesis of medium sized lactones, see: (a) A. K. Chatterjee, J. P. Morgan, M. Scholl, R. H. Grubbs, J. Am. Chem. Soc. 2000, 122, 3783-3784; (b) K. R. Buszek, N. Sato, Y. Jeong, Tetrahedron Lett. 2002, 43, 181-184; (c) T. Takahashi, H. Watanabe, T. Kitahara, Heterocycles 2002, 58, 99-104; (d) Y. Baba, G. Saha, S. Nakao, C. Iwata, T. Tanaka, T. Ibuka, H. Ohishi,Y. Takemoto, J. Org. Chem. 2001, 66, 81-88; (e) C. O. Kangani, A. M. Bruckner, D. P. Curran, Org. Lett. 2005, 7, 379-382; (f) P. Davoli, A. Spaggiari, L. Castagnetti, F. Prati, Org. Biomol. Chem. 2004, 2, 38-47; (g) R. V. Anand, S. Baktharaman, V. K. Singh, J. Org. Chem. 2003, 68, 3356-3359; (h) M. K. Gurjar, R. Nagaprasad, C. V. Ramana, Tetrahedron Lett. 2003, 44, 2873-2875; (i) E. Diez, D. J. Dixon, S. V. Ley, A. Polara, F. Rodriguez, Synlett 2003, 1186-1188; (j) D. Liu, S. A. Kozmin, Org. Lett. 2002, 4, 3005-3007; (k) A. Furstner, K. Radkowski, C.Wirtz, R. Goddard, C. W. Lehmann, R. Mynott, J. Am. Chem. Soc. 2002, 124, 7061-7069; (l) J. I. Aird, A. N. Hulme, J. W. White, Org. Lett. 2007, 9, 631-634; (m) N. Brown, G. Gao, M. Minatoya, B. Xie, D. VanderVelde, G. H. Lushingto, J. H. Perchellet, E. M. Perchellet, K. R. Crow, K. R. Buszek, J. Comb. Chem. 2008, 10, 628-631.
[4] For examples of lactonization approaches to the synthesis of medium-sized lactones, see: (a) T. Tabuchi, K. Kawamura, J. Inanaga, M. Yamaguchi, Tetrahedron Lett. 1986, 27, 3889-3890; (b) B. Simonot, G. Rousseau, J. Org. Chem. 1993, 58, 4-5; (c) K. R. Buszek, N. Sato, Y. Jeong, J. Am. Chem. Soc. 1994, 116, 5511-5512; (d) A. N. Hulme, G. E. Howells, Tetrahedron Lett. 1997, 38, 8245-8248; (e) I. Shiina, M. Kubota, H. Oshiumi, M. Hashizume, J. Org. Chem. 2004, 69, 1822-1830; (f) I. Shiina, M. Hashizume, Y. Yamai, H. Oshiumi, T. Shimazaki, Y. Takasuna, R. Ibuka, Chem. Eur. J. 2005, 11, 6601-6608; (g) E. Metay, E. Leonel, J. Nedelec, Synth. Commun. 2008, 38, 889-904; (h) J. D. White, C. M. Lincoln, J. Yang, W. H. C. Martin, D. B. Chan, J. Org. Chem. 2008, 73, 4139-4150; (i) J. Pietruszka, A. C. M. Rieche, Adv. Synth. Catal. 2008, 350, 1407-1412.
[5] For alternative approaches to the synthesis of medium-sized lactones, see: (a) D. M. Tapiolas, M. Roman, W. Fenical, T. J. Stout, J. Clardy, J. Am. Chem. Soc. 1991, 113, 4682-4683; (b) S. Inoue, Y. Iwabuchi, H. Irie, S. Hatakeyama, Synlett 1998, 735-736; (c) Ref. [1d]; (d) H. Ohi, S. Inoue, Y. Iwabuchi, H. Irie, S. Hatakeyama, Synlett 1999, 1757-1759; (e) R. A. Pilli, M. M. Victor, Tetrahedron Lett. 2002, 43, 2815-2818; (f) E. A. Anderson, J. E. P. Davidson, J. R. Harrison, P. T. O’Sullivan, J. W. Burton, I. Collins, A. B. Holmes, Tetrahedron Lett. 2002, 58, 1943-1971; (g) P. T. O’Sullivan, W. Buhr, M. A. M. Fuhry, J. R. Harrison, J. E. Davies, N. Feeder, D. R. Marshall, J.W. Burton, A. B. Holmes, J. Am. Chem. Soc. 2004, 126, 2194-2207.
[6] G. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95-102.
[7] For a recent example demonstrating the particular difficulty in the formation of medium-sized lactones, see: A. Lumbroso, N. Abermil, B. Breit, Chem. Sci. 2012, 3, 789-793.
[8] (a) H.-S. Yeom, J. Koo, H.-S. Park, Y. Wang, Y. Liang, Z.-X. Yu, S. Shin, J. Am. Chem. Soc. 2012, 134, 208-211. (b) T. Luo, M. Dai, S.-L. Zheng, S. L. Schreiber, Org. Lett. 2011, 13, 2834-2836
[9] S. N. Karad, W.K. Chung, R.-S. Liu, Chem. Commun., 2015, 51, 13004-13007.
[10] For other processes with the N-Boc group acting as nucleophile in cyclization reactions, see for instance: (a) S. Hanessian; M. Tremblay; M. Marzi; J. R. Del Valle, J. Org. Chem. 2005, 70, 5070-5085. (b) M. J. Fisher; L. E. Overman, J. Org. Chem. 1990, 55, 1447-1459.
[11] R. Robles-Machin, J. Adrio, J. C. Carretero, J. Org. Chem. 2006, 71, 5023-5026.
[12] P Sinha, A. S. K. Hashmi, Adv. Synth. Catal. 2004, 346, 432-438.
[13] T. Wang, S. Shi, M. H. Vilhelmsen, T. Zhang, M. Rudolph, F. Rominger, A. S. K. Hashmi, Chem. Eur. J. 2013, 19, 12512-12516.
[14] X.-Z. Shu, X.-Y. Liu, H.-Q. Xiao, K.-G. Ji, L.-N. Guo, C.-Z. Qi, Y.-M. Liang, Adv. Synth. Catal. 2007, 349, 2493-2498.
[15] K.-G. Ji, X.-Z. Shu, J. Chen, S.-C. Zhao, Z.-J. Zheng, X.-Y. Liu, Y.-M. Liang, Org. Biomol. Chem., 2009, 7, 2501-2505.
[16] (a) G. Y. Lin, C. W. Li, S.-H. Hung, R.-S. Liu, Org. Lett. 2008, 10, 5059-5062; (b) A. S. K. Hashmi, M. Buhrle, R. Salathe, J. W. Bats, Adv. Synth. Catal. 2008, 350, 2059-2064.
[17] S. N. Karad, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 8722-8726.
[18] S. K. Pawar, D. Vasu, R.-S. Liu, Adv. Synth. Catal. 2014, 356, 2411-2416.
[19] G. Luo, L. Chen, Tetrahedron Lett. 2015, 56, 6276-6278.
[20] S. N. Karad, W.-K. Chung, R.-S. Liu, Chem. Sci., 2015, 6, 5964-5968.
[21] Selected reviews for gold-catalyzed cycloadditions of alkynes or allenes: (a) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082; (b) F. López, J. L. Mascareñas, Chem. Soc. Rev. 2014, 43, 2904-2914; (c) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280-302; (d) A. Acardi, Chem. Rev. 2008, 108, 3266-3325. (e) R. Dorel and A. M. Echavarren, Chem. Rev. 2015, 115, 9028-9072.
[22] Recent reviews for ynamides, see (a) X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski and R. P. Hsung, Acc. Chem. Res., 2014, 47, 560-578; (b) K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and R. P. Hsung, Chem. Rev., 2010, 110, 5064-5106; (c) G. Evano, A. Coste and K. Jouvin, Angew. Chem. Int. Ed., 2010, 49, 2840-2859. (d) G. Evano, C. Theunissen and M. Lecomte, Aldrichimica Acta, 2015, 48, 59-70.
[23] For gold-catalyzed cycloadditions of ynamides with small molecules; see ref. 17-18 and selected examples: (a) P. W. Davies, A. Cremonesi and L. Damitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931-8935; (b) R. B. Dateer, B. S. Shaibu and R.-S. Liu, Angew. Chem. Int. Ed., 2012, 51, 113-117; (c) R. B. Dateer, K. Pati and R.-S. Liu, Chem. Commun. 2012, 48, 7200-7202; (d) Z. Xin, S. Kramer, J. Overgaard and T. Skrydstrup, Chem. Eur. J., 2014, 20, 7926-7930; (e) A.-H. Zhou, Q.-He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271; (f) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30-33.
[24] M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Commun. 2016, 52, 6324-6327.
[25] (a) Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo and V. M. Dong, J. Am. Chem. Soc. 2009, 131, 1077-1091; (b) Z. Shen, H. A. Khan and V. M. Dong, J. Am. Chem. Soc. 2008, 130, 2916-2917; (c) K. A. Rose, K. Zeitler, Org. Lett. 2010, 12, 4552-4555; (d) Y. A. Cheng, T. Chen, C. K. Tan, J. J. Heng, Y.-Y. Yeung, J. Am. Chem. Soc. 2012, 134, 16492-16495.
[26] (a) L. Liu, S. Xu, H. Zhou, Tetrahedron 2013, 69, 8386-8391; (b) W. Zhao, Z. Li, J. Sun, J. Am. Chem. Soc. 2013, 135, 4680-4683; (c) W. Zhao, Z. Wang, J. Sun, Angew. Chem. Int. Ed. 2012, 51, 6209-6213; (d) M. O. Erhunmwunse, P. G. Steel, Tetrahedron Letters 2009, 50, 3568-3570; (e) A. Deagostino, J. Maddaluno, C. Prandi, P. Venturello, J. Org. Chem. 1996, 61, 7597-7599.
[27] (a) X. C. Cheng, P. R. Jensen, W. Fenical, J. Nat. Prod., 1999, 62, 608-610; (b) Q. Mu, W. Tang, C. Li, Y. Lu, H. Sun, H. Zheng, X. Hao, Q. Zheng, N. Wu, L. Lou, and B. Xu, Heterocycles, 1999, 51, 2969-2976; (c) Q. Zhang, C. Deng, L. Fang, W. Xu, Q. Zhao, J. Zhang, Y. Wang, X. Lei, Chin. J. Chem. 2013, 31, 355-370; (d) B. S. Siddiqui, I. A. Hashmi, S. Begum, Heterocycles, 2002, 57, 715-721.
[28] (a) A. Zhdanko, M. Strὄbele and M. E. Maier, Chem. Eur. J. 2012, 18, 14732-14744. (b) S. Dupuy, D. Gasperini and S. P. Nolan, ACS Catal. 2015, 5, 6918-6921. (c) A. Gomez-Suarez, Y. Oonishi, S. Meiries and S. P. Nolan, Organometallics 2013, 32, 1106-1111. (d) S. Gaillard, J. Bosson, R. S. Ramón, P. Num, A. M. Z. Slawin and S. P. Nolan, Chem. Eur. J. 2010, 16, 13729-13740.
[29] Crystallographic data of compounds (2-3d), (2-3o) and (2-5a) were deposited at Cambridge Crystalligraphic Data Centers (2-3d: CCDC 1455406; 2-3o: CCDC 1459007; 2-5a: CCDC 1062772).
[30] The synthesis of [4+4]-annulation product (2-5a) was mentioned in an early report; see ref 20.
[31] S. K. Pawar, C.-D. Wang, S. Bhunia, A. M. Jadhav and R.-S. Liu, Angew. Chem. Int. Ed. 2013, 52, 7559-7563.
[32] Compound (2-1a) – (2-1b), (2-1d) – (2-1g), (2-1i) – (2-1j): Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu*, Chem. Commun., 2015, 51, 13004-13007.
[33] a) R. B. Dateer, K. Pati, R.-S. Liu, Chem. Comm. 2012, 48, 7200-7202; b) Ohashi, Masao et al, European Journal of Medicinal Chemistry 2015, 90, 53-67; c) S. Vercruysse, L. Cornelissen, F. Nahra, L. Collard and O. Riant, Chem. Eur. J., 2014, 20, 1834-1838.
[34] E. Borredon, F. Clavellinas, M. Delmas, A. Gaset, J. V. Sinisterra J. Org. Chem., 1990, 55, 501–504.
[35] Compound (2-6): K. Kojima, M. Kimura, S. Uedab, Y. Tamarub Tetrahedron 2006, 62, 7512–7520.
[36] (a) Compound (2-2f): Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. Tetrahedron Lett., 1989, 30, 1427-1428. b) Compound racemic (2-2g): i) Stradi, R.; Pocar, D.; Cassio, C. J. Chem. Soc., Perkin Trans. 1, 1974, 2671-2672. ii) Singaram, B.; Goralski, C.; Rangaishenvi, M.; Brown, H. J. Am. Chem. Soc., 1989, 111, 384-386. iii) Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. Tetrahedron: asymmetry, 2006, 17, 372-376; c) Compound (2-2h) was prepared form commercially available transbeta-methylstyrene (available from Aldrich) by using the procedure by Sello, G.; Orsini, F.; Bernasconi, S.; Gennaro, P. Tetrahedron: asymmetry, 2006, 17, 372-376.
[37] (a) Compound (2-4a) – (2-4e): F. Bertolini, S. Crotti, V. D. Bussolo, M. Pienschi, J. Org. Chem. 2008, 73, 8998-9007; K. Okuma, Y. Tanaka, H. Ohta, J. Org. Chem. 1983, 48, 5133-5134.
[38] Ruben S. Ramon, Sylvain Gaillard, Albert Poater, Luigi Cavallo, Alexandra M. Z. Slawin, and Steven P. Nolan, Chem. Eur. J. 2011, 17, 1238 – 1246.
1.3. Chapter 3:
[1] For recent reviews, see: (a) E. Jimenez-Nunez, A. M. Echavarren, Chem. Commun., 2007, 333-346; (b) A. S. K. Hashmi, G. J. Hutchings, Angew. Chem. Int. Ed. 2006, 45, 7896-7936; (c) A. Hoffmann-Roder, N. Krause, Org. Biomol. Chem. 2005, 3, 387-391.
[2] For selected examples, see: (a) J. R. Manning, H. M. Davies, J. Am. Chem. Soc. 2008, 130, 8602-8603; (b) K. C. Coffman, T. A. Palazzo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo, M. J. Kurth, Org. Lett. 2013, 15, 2062-2065; (c) A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271; (d) H. Kawai, K. Tachi, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem., Int. Ed. 2011, 50, 7803-7806; (e) X. L. Liu, W. Y. Han, X. M. Zhang, W. C. Yuan, Org. Lett. 2013, 15, 1246-1249; (f) H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed. 2008, 47, 7446-7449; (g) X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993; (h) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, RSC Adv. 2015, 5, 18172-18176; (i) S. Pusch, T. Opatz, Org. Lett. 2014, 16, 5430-5433
[3] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551; and also see ref [15]
[4] (a) T. M. V. Pinho e Melo, Curr. Org. Chem. 2005, 9, 925-958; (b) B. Iddon, Heterocycles 1994, 37, 1263-1319; (c) A. Pace, S. Buscemi, N. Vivona, Org. Prep. Proc. 2007, 39, 1-70; (d) W. S. Hamama, M. E. Ibrahim, H. H. Zoorob, Synth. Commun. 2013, 43, 2393-2440; (e) F. Heaney, Eur. J. Org. Chem. 2012, 3043-3048; (f) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; (g) T. Lu, F. Hu, Synthesis 2012, 44, 2805-2824; (h) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084-3213; (i) T. M. V. D. Pinho e Melo, Eur. J. Org. Chem. 2010, 3363-3376.
[5] A. Baschieri, L. Bernardi, A. Ricci, S. Suresh, M. F. A. Adamo, Angew. Chem. Int. Ed. 2009, 48, 9342-9345.
[6] C. Del Fiandra, L. Piras, F. Fini, P. Disetti, M. Moccia,M. F. A. Adamo, Chem. Commun. 2012, 48, 3863-3865.
[7] M. F. A. Adamo, M. Nagabelli, Org. Lett. 2008, 10, 1807-1810.
[8] see [2d]; For trifluoromethylation of isoxazole triflones, see: (b) H. Kawai, Y. Sugita, E. Tokunaga, H. Sato, M. Shiro, N. Shibata, Chemistry Open 2014, 3, 14-18. For a personal account, see: (c) H. Kawai, N. Shibata, Chem. Rec. 2014, 14, 1024-1040.
[9] X. Lei, L. Li, Y.-P. He, Y. Tang, Org. Lett. 2015, 17, 5224-5227.
[10] N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin, and A. V. Agafonova, J. Org. Chem. 2017, 82, 256-268.
[11] J. R. Manning, H. M. L. Davies, Tetrahedron, 2008, 64, 6901-6908.
[12] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J. 2015, 10, 1854-1858.
[13] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609.
[14] For selected examples, see: (a) C. F. Martinez-Farina, D. L. Jakeman, Chem. Commun. 2015, 51, 14617-14619; (b)W. R. Martinez, G. C. G. Militao, T. G. da Silva, R. O. Silva, P. H. Menezes, RSC Adv. 2014, 4, 14715-14718; (c) F. Shah, P. Mukherjee, J. Gut, J. Legac, P. J. Rosenthal, B. L. Tekwani, M. A. Avery, J. Chem. Inf. Model. 2011, 51, 852-864; (d) R. Mueller, A. L. Rodriguez, E. S. Dawson, M. Butkiewicz, T. T. Nguyen, S. Oleszkiewicz, A. Bleckmann, C. D. Weaver, C.W. Lindsley, P. J. Conn, J. Meiler, ACS Chem. Neurosci. 2010, 1, 288-305; (e) A. A. Abdel-Hafez, B. A. Abdel- Wahab, Bioorg. Med. Chem. 2008, 16, 7983-7991; (f) L. Galam, M. K. Hadden, Z. Ma, Q. Z. Ye, B. G. Yun, B. S. Blagg, R. L. Matts, Bioorg. Med. Chem. 2007, 15, 1939-1946; (g) A. Cul, A. Chihab- Eddine, A. Pesquet, S. Marchalin, A. Daich, J. Heterocycl. Chem. 2003, 40, 499-505.
[15] For recent reviews see: a) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367; b) R. Dorel, A. M. Echavarren, Chem. Rev. 2015, 115, 9028-9072; c) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; d) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; e) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082; f) D. Qian, J. Zhang, Chem. Rec. 2014, 14, 280-302.
[16] For cycloaddition reactions of ynamides see: a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324-6327; b) P. W. Davies, A. Cremonesi, L. Dumitrscu, Angew. Chem. Int. Ed. 2011, 50, 8931-8935; c) S. N. Karad, S. Bhunia, R.-S. Liu, Angew. Chem. Int. Ed. 2012, 51, 8722-8726; d) S. N. Karad, R.-S. Liu, Angew. Chem. Int. Ed. 2014, 53, 9072-9076; e) L. Zhu, Y. Yu, Z. Mao, X. Huang, Org. Lett. 2015, 17, 30-33; f) S. K. Pawar, R. L. Sahani, R.-S. Liu, Chem. Eur. J. 2015, 21, 10843-10850; g) S. K. Pawar, D. Vasu, R.-S. Liu, Adv. Synth. Catal. 2014, 356, 2411-2416.
[17] For cycloaddition reactions of propiolates see: a) S. N. Karad, W.-K. Chung, R.-S. Liu, Chem. Sci. 2015, 6, 5964-5968; b) S. N. Karad, W.-K. Chung, R.-S. Liu, Chem. Commun. 2015, 51, 13004-13007; c) T. Luo, M. Dai, S.-L. Zheng, S. L. Schreiber, Org. Lett. 2011, 13, 2834-2836; d) R. L. Sahani, R.-S. Liu, Chem. Commun. 2016, 52, 7482-7485; e) H.-S. Yeom, J. Koo, H.-S. Park, Y. Wang, Y. Liang, Z.-X. Yu and S. Shin, J. Am. Chem. Soc. 2012, 134, 208–211; f) G. Luo, L. Chen, Tetrahedron Lett. 2015, 56, 6276–6278.
[18] For the recent reviews and bioactivities of isoxazoles, see: a) F. Hu, M. Szostak, Adv. Synth. Catal. 2015, 357, 2583-2614; b) N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442; c) A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 2013, 113, 3084-3213; d) A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, V. V. Pakalnis, N. V. Rostovskii, Russ. Chem. Rev. 2015, 84, 335-377. Also see: e) J. Wang, Y. Wu, C. Ma, G. Fiorin, J. Wang, L. H. Pinto, R. A. Lamb, M. L. Klein, W. F. DeGrado, Proc. Natl. Acad. Sci. USA 2013, 10, 1315-1320; f) A. A. Jensen, N. Plath, M. H. F. Pedersen, V. Isberg, J. Krall, P. Wellendorph, T. B. Stensbol, D. E. Gloriam, P. K.-Larsen, B. Frolund, J. Med. Chem. 2013, 56, 1211-1227.
[19] (a) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794-797; (b) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688-12692.
[20] For review on transition metal-catalyzed cleavage of alkynes, see: F. Chen, T. Wang, N. Jiao, Chem. Rev. 2014, 114, 8613-8661.
[21] For gold and silver-catalyzed cleavage of alkynes, see selected examples: a) M. Gaydou, A. M. Echavarren, Angew. Chem. Int. Ed. 2013, 52, 13468-13471; b) Y. Liu, F. Song, S. Guo, J. Am. Chem. Soc. 2006, 128, 11332-11333; c) T. Shen, T. Wang, C. Qin, N. Jiao, Angew. Chem. Int. Ed. 2013, 52, 6677-6680; d) A. Das, R. Chaudhuri, R.-S. Liu, Chem. Commun. 2009, 4046-4048; e) D. V. Patil, H.-S. Park, J. Koo, J. W. Han, S. Shin, Chem. Commun. 2014, 50, 12722-12725.
[22] For bioactive molecules containing pyrrole cores, see: a) V. Estevez, M. Villacampa, J. C. Menendez, Chem. Soc. Rev. 2014, 43, 4633-4657; b) M. Baumann, I. R. Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011, 7, 442-495; c) J. R. Carson, R. J. Carmosin, P. M. Pitis, J. L. Vaught, H. R. Almond, J. P. Stables, H. H. Wolf, E. A. Swinyard, H. S. White, J. Med. Chem. 1997, 40, 1578-1584; d) M. B. Wallace, M. E. Adams, T. Kanouni, C. D. Mol, D. R. Dougan, V. A. Feher, S. M. O’Connell, L. Shi, Q. Dong, Bioorg. Med. Chem. Lett. 2010, 20, 4156-4158.
[23] For bioactive molecules containing imidazo[1,2-a]pyridine cores, see: a) S. Z. Langer, S. Arbilla, J. Benavides and B. Scatton, Adv. Biochem. Psychopharmacol. 1990, 46, 61-72; b) R. J. Boerner, H. J. Moller, Psychopharmakother 1997, 4, 145; c) K. Gudmundsson and S. D. Boggs, PCT Int. Appl. WO2006026703, 2006.
[24] X-ray diffractions of compounds (3-3b), (3-3i), (3-4f), (3-5b) and (3-5f) were deposited at Cambridge Crystallographic Data Centers: (3-3b) (CCDC 1510788), (3-3i) (CCDC 1510795), (3-4f) (CCDC 1510797), (3-5b) (CCDC 1510796) and (3-5f) (CCDC 1510794).
[25] For 1,5-acyl shift, see: a) W. Rao, M. J. Koh, P. Kothandaraman, P. W. H. Chan, J. Am. Chem. Soc. 2012, 134, 10811-10814; b) D. Leboeuf, A. Simonneau, C. Aubert, M. Malacria, V. Gandon, L. Fensterbank, Angew. Chem. Int. Ed. 2011, 50, 6868-6871; c) W. Rao, Sally, M. J. Koh, P. W. H. Chan, J. Org. Chem. 2013, 78, 3183-3195.
[26] For gold catalyzed synthesis of pyrroles, see refs 6-7 and selected examples: a) D. J. Gorin, N. R. Davies, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 11260-11261; b) P. W. Davies, N. Martin, Org. Lett. 2009, 11, 2293-2296; c) J. T. Binder, S. F. Kirsch, Org. Lett. 2006, 8, 2151-2153; d) A. Saito, T. Konishi, Y. Hanzawa, Org. Lett. 2010, 12, 372-374.
[27] (a) R. B. Dateer, K. Pati, R.-S. Liu, Chem. Comm. 2012, 48, 7200-7202; (b) Ohashi, Masao et al, European Journal of Medicinal Chemistry 2015, 90, 53-67; (c) S. Vercruysse, L. Cornelissen, F. Nahra, L. Collard and O. Riant, Chem. Eur. J., 2014, 20, 1834-1838.
[28] Compound (3-1a)-(3-1d), (3-1f)-(3-1j), (3-1l)-(3-1n): (a) Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu*, Chem. Commun., 2015, 51, 13004-13007. (b) Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu Chem. Sci., 2015, 6, 5964-5968. Compound (3-1b): (c) Rajkumar Lalji Sahani, Rai-Shung Liu, Chem. Commun. 2016, 52, 7482-7458.
[29] Compound (3-1k): Z.-S. Chen, X.-H. Duan, P.-X. Zhou, S. Ali, J.-Y. Luo, Y.-M. Liang, Angew. Chem. Int. Ed. 2012, 51, 1370 –1374.
[30] Compound (3-1p): S. Karabiyikoglu, Y. Kelgokmen, M. Zora, Tetrahedron, 2015, 71, 4324-4333.
[31] Compound (3-2a)-(3-2b), (3-2f): A. G. Griesbeck, M. Franke, J. Neudorfl, H. Kotaka, Beilstein J. Org. Chem. 2011, 7, 127–134.
[32] Compound (3-2c)-(3-2d): T. V. Hansen, P. Wu, V. V. Fokin, J. Org. Chem., 2005, 70, 7761-7764.
1.4. Chapter 4:
[1] General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; (b) M. Balasubramanian, J. G. Keay in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300; (c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143-1191; (d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004; (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.
[2] π-Acid catalysis reviews: (a) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403.
[3] General and recent reviews of gold catalysis and its applications (a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912; (b) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; (c) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; (d) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; (e) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; (f) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.
[4] (a) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7395; (b) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936; (c) “Synthetic Carbene and Nitrene Chemistry”: M. P. Doyle in Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561-592.
[5] P. W. Davies, M. Garzon, Asian J. Org. Chem. 2015, 4, 694-708.
[6] (a) J. S. Baum, M. E. Condon, D. A. Shook, J. Org. Chem. 1987, 52, 2983-2988; (b) F . Heaney, T. McCarthy, M. Mahon, V. McKee, Org. Biomol. Chem. 2005, 3, 4351-4361; (c) N. Haider, G. Heinisch, J. Moshuber, Arch Pharm 1992, 325, 119-122; (d) D. G. Hawkins, O. Meth-Cohn, J. Chem. Soc., Perkin Trans. 1983, 1, 2077-2087.
[7] (a) V. F. Sedova, O. P. Shkurko, Chem. Heterocyclic Compd. 1995, 31, 481-484; (b) V. M. Pechenina, N. A. Mukhina, V. G. Klimenko, V. G. Granik, Chem. Heterocyclic Compd. 1986, 22, 876-879.
[8] (a) P. Angibaud, L. Mevellec, C. Meyer, X. Bourdrez, P. Lezouret, I. Pilatte, V. Poncelet, B. Roux, S. Merillon, D. W. End, J. Van Dun, W. Wouters, M. Venet, Eur. J. Med. Chem. 2007, 42, 702-714; (b) R. Kalish, E. Broger, G. F. Field, T. Anton, T. V. Steppe, L. H. Sternbach, J. Heterocycl Chem. 1975, 12, 49-57; (c) J. B. Hester, J. H. Ludens, D. E. Emmert, B. E. West, J Med Chem. 1989, 32, 1157-1163.
[9] L. H. Sternbach, J. Med. Chem. 1979, 22, 1-7.
[10] (a) S. Yu, G. Tang, Y. Li, X. Zhou, Y. Lan and X. Li, Angew. Chem. Int. Ed., 2016, 55, 8696-8700; (b) C. Tang, M. Zou, J. Liu, X. Wen, X. Sun, Y. Zhang, N. Jiao, Chem. Eur. J. 2016, 22, 11165-11169; (c) M. Zou, J. Liu, C. Tang and N. Jiao, Org. Lett., 2016, 18, 3030-3033; (d) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong and X. Li, Org. Lett., 2016, 18, 2812-2815; (e) L. Shi and B. Wang, Org. Lett., 2016, 18, 2820-2823.
[11] (a) X. Fan, Y. Zhang, Tetrahedron lett. 2002, 43, 7001-7003; (b) X. Fan, X. Zhang, Y. Zhang, Heteroatom chem. 2005, 16, 637-643.
[12] L. Li, H. Wang, S. Yu, X. Yang, X. Li, Org. Lett. 2016, 18, 3662-3665.
[13] X. Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993.
[14] D. K. Tiwari, M. Phanindrunu, S. B. Wakade, J. B. Nanubolu, D. K. Tiwari, Chem. Commun., 2017, 53, 5302-5305.
[15] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797.
[16] H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688-12692.
[17] A. Nilsen, G. P. Miley, I. P. Forquer, M. W. Mather, K. Katneni, Y. Li, S. Pou, A. M. Pershing, A. M. Stickles, E. Ryan, J. X. Kelly, J. S. Doggett, K. L. White, D. J. Hinrichs, R. W. Winter, S. A. Charman, L. N. Zakharov, I. Bathurst, J. N. Burrows, A. B. Vaidya, M. K. Riscoe, J. Med. Chem. 2014, 57, 3818-3834.
[18] V. Sridharan, P. A. Suryavanshi, J. C. Menendez, Chem. Rev. 2011, 111, 7157-7259.
[19] B. Akagah, A. T. Lormier, A. Fournet, B. figadere, Org. Biomol. Chem., 2008, 6, 4494-4497.
[20] (a) P. W. Davies, M. Garzon, Asian J. Org. Chem. 2015, 4, 694-708; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551.
[21] A. H. Zhou, Q. He, C. Shu, Y. F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271.
[22] (a) M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Commun. 2016, 52, 6324-6327; (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307-3310.
[23] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030.
[24] X-ray diffractions of compounds (4-3a), (4-4i’), (4-4k’), (4-4l), (4-5e), and (4-7e) were deposited at Cambridge Crystallographic Data Centers: (4-3a) (CCDC 1561351), (4-4i’) (CCDC 1561349), (4-4k’) (CCDC 1561352), (4-4l) (CCDC 1561354), (4-5e) (CCDC 1561353), and (4-7e) (CCDC 1561350).
Molecular structure of product (4-3a’) is confirmed by its cyclopropyl derivative (4-3f’) which is also obtained by reaction of cyclopropyl propiolate (4-1f) with anthranil (4-2a) in presence of 10 mol% of IPrAuCl/AgNTf2 in 1,2-dichloroethane at 80 °C along with (4-3f).
[25] See examples of ring opening of epoxide group (a) T. Nagasawa, N. Shimada, M. Torihata, S. Kuwahara, Tetrahedron, 2010, 66, 4965-4969; (b) P. Risch, T. Pfeifer, J. Segrestaa, H. Fretz, J. Pothier, J. Med. Chem. 2015, 58, 8011-8035.
[26] Compounds (4-1a)-(3-1c), (4-1f)-(4-1h), (4-1l)-(4-1m): (a) Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu*, Chem. Commun., 2015, 51, 13004-13007. (b) Somnath Narayan Karad, Wei-Kang Chung and Rai-Shung Liu, Chem. Sci., 2015, 6, 5964-5968. Compound (3-1c) and (3-1d): (c) Rajkumar Lalji Sahani, Rai-Shung Liu, Chem. Commun. 2016, 52, 7482-7458; (d) Rajkumar Lalji Sahani, Rai-Shung Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030.
[27] Compounds (4-2a)-(4-2j): ref [15] and [16], and (a) J. Chauhan, S. Fletcher, Tetrahedron Lett. 2012, 53, 4951-4954.