研究生: |
劉勝墉 Sheng Yung Liu |
---|---|
論文名稱: |
鈀奈米薄膜氫化之動力及應力分析暨儲氫材料應用裝置之設計 Kinetics and Stress Analysis for Hydrogenated Pd Nanofilms and Engineering Design for Utilization of Metal Hydrides |
指導教授: |
彭宗平
Tsong Pyng Perng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 英文 |
論文頁數: | 132 |
中文關鍵詞: | 電化學石英晶體微天平 、奈米薄膜 、表面效應 、薄膜應力 、動力學 、儲氫材料 、熱幫浦 |
外文關鍵詞: | EQCM, Nanofilm, Surface effect, Thin film stress, Kinetics, Hydrogen storage material, Heat Pump |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成兩個部份:第一部份討論鈀奈米薄膜的吸氫動力反應以及其分析氫化膨脹造成的薄膜應力;第二部份則是利用儲氫材料氫化的特性設計應用裝置,例如,可攜式儲氫槽、熱幫浦和燃料電池等等。
第一部份的研究,利用磁控濺鍍法(sputter)製備鈀奈米薄膜於電化學石英晶片微天平(EQCM)上,然後同時量測鈀奈米薄膜吸放氫造成的頻率變化以及氧化還原電流,並分別由法拉第定律和EerNisse方程式計算吸氫量和薄膜應力;在吸氫動力反應方面,係選擇幾個固定的還原電位,量測不同比例之輕水和重水之吸收速率,建立數學模式分析。為實際量測氫化的應力,將部份鈀奈米薄膜鍍於矽單晶片上,利用彎曲儀得之,並與前述EQCM所得之薄膜應力相比較。
第二部份談的是應用設計。可攜式儲氫管的設計,是為了因應未來對可攜式氫能源的需求而設計的,事實上,此設計已做成實品應用於本實驗室的展示及研究上;氫能熱幫浦是根據材料氫化的特性,針對附加價值高的汽車冷氣而做的設計,以改良第一代的缺失,提高效率。目前最有可能的電動車動力是燃料電池,理論及商業價值皆非常高;關於燃料電池設計,整合了部份鎳氫電池、電容器和氣相充氫液相放電的原理而成,理論上有可能產生較大的電流。
The topics of the thesis include two parts: the first part discusses the kinetics of hydrogenation in a Pd nanofilm and analyzes the stress. The other part is engineering designs for utilization of metal hydrides, for example, hydrogen storage tank, heat pump, and fuel cell.
The electrochemical quartz crystal microbalance (EQCM) was used to measure both the frequency shift and the oxidation-reduction current at the same time in situ. Prior to the EQCM test, a Pd nanofilm was coated on the quartz crystal microbalance by magnetic sputtering. The capacity of hydrogen in the Pd nanofilm and stresses induced by hydrogen absorption could be obtained based on the Faraday’s law and the EerNisse’s formula, respectively. Kinetics of hydrogen/deuterium absorption in Pd nanofilm was performed at constant potentials and a mathematical model was established to interpret the reasons of time delay. To measure the stresses induced by hydrogen absorption, the bending laser beam apparatus was used to cross check the induced stresses.
The topics of second part concern the engineering design for utilizes of metal hydrides. The concepts of a portable hydrogen pipe are developed for personal necessity of hydrogen energy in future. In fact, a prototype portable hydrogen pipe have been fabricated and used as a hydrogen source in my laboratory. The hydride heat pump is expected to design as an automobile air-conditioner. This one improves the faults from the first-generation hydride heat pump to increase the efficiency of heat exchange. One of the frontier studies in applications of hydrogen is the fuel cell. It is the most possible to be the power for the electrical automobile. The design concept is induced from the principles of Nickel-hydride battery, electrical capacity, and hydrogen permeation membrane. Based on the concept, the high-density current may perhaps be developed.
[1] G. Sauerbrey, Z. Phys., 155 (1959) 206.
[2] R. V. Bucur and T. B. Flanagan, Z. Phys. Chem., 88 (1974) 225.
[3] H. Sakaguchi, N. Taniguchi, H. Nagai, K. Niki, G. Adachi, and J. Shiokawa, J. Phys. Chem., 89 (1985) 5550.
[4] H. Sakaguchi, N. Taniguchi, H. Seri, J. Shioawa, and G. Adachi, J. Appl. Phys, 64 (1988) 15.
[5] T. Nomura, Anal. Chim. Acta, 124 (1981) 81.
[6] T. Nomura, T. Nagamune, K. Izutsu, and T. S. West, Bunseki Kagaku, 30 (1981) 494.
[7] S. Bruckenstein and M. Shay, Electrochim. Acta, 30 (1985) 1295.
[8] W. Wicke and J. Blaurock, J. Less-Common Met., 130 (1987) 351.
[9] J. Mcbreen, J. Electroanal. Chem., 287 (1990) 279.
[10] Y. Li and Y.-T Cheng, J. Electrochem. Soc., 143 (1996) 120.
[11] E. P. EerNisse, J. Appl. Phys., 43 (1972) 1330.
[12] G. T. Cheek and W. E. O’Grady, J. Electroanal. Chem., 277 (1990) 341.
[13] L. Schlapbach: “Hydrogen in Intermetallic Compounds II,” Springer, Berlin, 1992.
[14] A. Sieverts, E. Jurish and A. Metz., Z. Allgem. Chem., 92 (1915) 4.
[15] A. Sieverts, E. Jurish and H. Hagen, Z. Phys. Chem., 174A (1935) 247.
[16] Y. Fukai: “The Metal-Hydrogen System, Springer,” New York, 1993.
[17] T. Sakai, H. Ishikawa, H. Miyamura, and N. Kuriyama, J. Electrochem. Soc., 138 (1991) 908
[18] V. Tsionsky, L. Daikhin and E. Gileadi, J. Electrochem. Soc., 143 (1996) 7.
[19] H. E. Boyer and T. L. Gall: “Metals Handbook Desk Edition,” ASM international, 1984, 13.2.
[20] G. J. Grasshoff, C. E. Pilkington and C. W. Corti, Platinum Met. Rev., 27 (1983) 157.
[21] J. Volkl, G. Wollenweber, K.-H. Klatt, and G. Alefeld, Z. Naturforsch a, 26 (1971) 922.
[22] B. Baranowski, Ber. Bunsenges. Physik. Chem., 76 (1972) 714.