簡易檢索 / 詳目顯示

研究生: 陳映君
Chen, Ying-Chun
論文名稱: 錳摻雜對鐵酸鉍薄膜之能隙影響及其性質探討
The Band Gap of Mn-substitution BiFeO3 Thin Film and its Properties
指導教授: 吳振名
口試委員: 李奕賢
陳世偉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 110
中文關鍵詞: 鐵酸鉍能隙光伏
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗使用溶膠-凝膠旋鍍法(Sol-gel spin coating)製作BFMO薄膜,由薄膜的穿透率光譜圖經由Tauc formula計算,成功地證實使用錳摻雜的方式可以使BFO的能隙降低,最多可降低約0.17eV左右。這將有助於在光學應用上能隙過大的BFO可以更有效率地轉換能量。
    實驗還分別探討了鍍製在白金基板上的低錳摻雜量BFMO與鍍製在LNO緩衝層上高錳摻雜量BFMO,在不同氣氛下熱處理的基本性質、照光前後的性質等討論。除了透過XRD證實鍍製出的薄膜為BFMO鈣鈦礦結構單一相,LNO緩衝層的使用將有效地在摻雜量上升時降低第二相的產生。而透過介電常數與漏電性質的量測與XPS能譜的分析,發現除了BFO中部分的Fe3+會還原成Fe2+,摻雜錳在BFO中取代鐵原子的位置,也會因為錳在結構中形成一部分的Mn2+,因此透過電荷補償機制在薄膜中形成許多氧空缺,造成介電常數在低頻時數值過大以及漏電上升等現象。
    BFMO在照光前後的性質,除了BFO展現光伏特性以外,摻雜錳的薄膜皆沒有光伏效應產生,這可能是因為氧空缺等空間電荷使得因照光產生的電子電洞對在分離後擴散到晶域的兩端前就發生了複合(Recombination),使光伏效應消失。另一方面,所有BFMO薄膜在照光後皆有閉路電流上升的現象,根據文獻報導,這種光電導性質(Photoconductivity)的來源,原因之一可能就是氧空缺,這也符合我們在先前實驗的量測結果以及推論。


    致謝 I 摘要 II 目錄 III 表目錄 VII 圖目錄 VIII 第一章 導論 1 1.1 簡介 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 簡介複鐵式材料 (Multiferromaterials) 4 2.1.1 鐵電性質 5 2.1.2 複鐵式材料的磁性 6 2.1.3 鈣鈦礦結構 7 2.2 介電性質 7 2.2.1 極化機制 7 2.2.2 介電常數與散逸因子 9 2.3 漏電流機制 10 2.4 鐵酸鉍(BiFeO3)特性 13 2.4.1 晶格結構 13 2.4.2 基本性質 14 2.4.3 能隙(Band gap) 15 2.4.4 光伏特性 15 第三章 實驗方法 25 3.1 實驗流程 25 3.1.1 基板製備 25 3.1.2 溶液製備 25 3.1.3 LaNiO3緩衝層鍍製 26 3.1.4 薄膜鍍製 26 3.1.5 上電極製作 27 3.2 實驗量測 27 3.2.1 晶相結構 27 3.2.2 表面形貌 28 3.2.3 元素成分分析 28 3.2.4 薄膜光學性質量測 28 3.2.5 介電常數及散逸因子 28 3.2.6 漏電流量測 29 3.2.7表面化學特性分析 29 3.2.8 電滯曲線量測 29 3.2.9 照光性質量測 30 第四章 結果與討論 34 4.1 BiFe(1-x)Mn(x)O3低摻雜量 34 4.1.1晶體結構 34 4.1.2 微觀結構及成分分析 35 4.1.3 能隙 36 4.1.4 介電常數與散逸因子 37 4.1.5 漏電流性質 40 4.1.6表面化學特性分析 41 4.1.7 鐵電性質 43 4.1.8 照光性質 44 4.2 BiFe(1-x)Mn(x)O3/LaNiO3高摻雜量 48 4.2.1晶體結構 48 4.2.2 微觀結構及成分分析 49 4.2.3 能隙 50 4.2.4 介電常數與散逸因子 50 4.2.5 漏電流性質 51 4.2.6 表面化學特性分析 52 4.2.7 鐵電性質 53 4.2.8 照光性質 53 第五章 結論 99 參考文獻 101

    [1]. Kimura, T.; Goto, T.; Shintani, H.; Ishizaka, K.; Arima, T.; Tokura, Y., Magnetic control of ferroelectric polarization. Nature 2003, 426 (6962), 55-58.

    [2]. Wang, J.; Neaton, J. B.; Zheng, H.; Nagarajan, V.; Ogale, S. B.; Liu, B.; Viehland, D.; Vaithyanathan, V.; Schlom, D. G.; Waghmare, U. V.; Spaldin, N. A.; Rabe, K. M.; Wuttig, M.; Ramesh, R., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 2003, 299 (5613), 1719-1722.

    [3]. Venevtsev, Y. N.; Gagulin, V. V.; Zhitomirsky, I. D., MATERIAL SCIENCE ASPECTS OF SEIGNETTE-MAGNETISM PROBLEM. Ferroelectrics 1987, 73 (1-2), 221-248.

    [4]. 齊孝定, “多鐵性材料的發展及潛在應用”, 物理雙月刊, 2009.

    [5]. Eerenstein, W.; Mathur, N. D.; Scott, J. F., Multiferroic and magnetoelectric materials. Nature 2006, 442 (7104), 759-765.

    [6]. Malcolm E. Lines, Alastair M. Glass, Principles and Applications of Ferroelectrics and Related Materials, Oxford University Press, 1977.

    [7]. B. Jaffe,W.R. Cook,H.Jaffe, Piezoelectric Ceramics, Academic Press, 1971, P.50.

    [8]. A. J. Moulson, J. M. Herbert, Electroceramics: Materials, Properties, Applications, 1990, P.52-55, 61-62.

    [9]. Yang, Y. S.; Lee, S. J.; Kim, S. H.; Chae, B. G.; Jang, M. S., Schottky barrier effects in the electronic conduction of sol-gel derived lead zirconate titanate thin film capacitors. J. Appl. Phys. 1998, 84 (9), 5005-5011.

    [10]. Hu, H.; Krupanidhi, S. B., CURRENT-VOLTAGE CHARACTERISTICS OF ULTRAFINE-GRAINED FERROELECTRIC PB(ZR, TI)O3 THIN-FILMS. J. Mater. Res. 1994, 9 (6), 1484-1498.

    [11]. Stolichnov, I.; Tagantsev, A., Space-charge influenced injection model for conduction in Pb(ZrxTi1-x)O-3 thin films. J. Appl. Phys. 1998, 84 (6), 3216-3225.

    [12]. Kingery W. D.; Bowen H. K.; Uhlmann D. R.,. Introduction to ceramics. John Wiley and Sons, New York 1976

    [13]. Lines M. E.; Glass A. M., Principles and application of ferroelectrics and related materials. Oxford University Press,New York 2001, Chap.2-5.

    [14]. Michel, C.; Moreau, J. M.; Achenbac.Gd; Gerson, R.; James, W. J., ATOMIC STRUCTURE OF BIFEO3. Solid State Commun. 1969 .

    [15]. Ruette, B.; Zvyagin, S.; Pyatakov, A. P.; Bush, A.; Li, J. F.; Belotelov, V. I.; Zvezdin, A. K.; Viehland, D., Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: Cycloidal to homogeneous spin order. Phys. Rev. B 2004, 69 (6).

    [16]. Teague, J. R.; Gerson, R.; James, W. J., DIELECTRIC HYSTERESIS IN SINGLE CRYSTAL BIFEO3. Solid State Commun. 1970.

    [17]. Catalan, G.; Scott, J. F., Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21 (24), 2463-2485.

    [18]. Sosnowska, I.; Schaffer, W.; Kockelmann, W.; Andersen, K. H.; Troyanchuk, I. O., Crystal structure and spiral magnetic ordering of BiFeO3 doped with manganese. Appl. Phys. A-Mater. Sci. Process. 2002, 74, S1040-S1042.

    [19]. Liu, K.; Fan, H. Q.; Ren, P. R.; Yang, C., Structural, electronic and optical properties of BiFeO3 studied by first-principles. J. Alloy. Compd. 2011, 509 (5), 1901-1905.

    [20]. Gujar, T. P.; Shinde, V. R.; Lokhande, C. D., Nanocrystalline and highly resistive bismuth ferric oxide thin films by a simple chemical method. Mater. Chem. Phys. 2007, 103 (1), 142-146.

    [21]. Fruth, V.; Tenea, E.; Gartner, M.; Anastasescu, A.; Berger, D.; Ramer, R.; Zaharescu, M., Preparation of BiFeO3 films by wet chemical method and their characterization. J. Eur. Ceram. Soc. 2007, 27 (2-3), 937-940.

    [22]. Ihlefeld, J. F.; Podraza, N. J.; Liu, Z. K.; Rai, R. C.; Xu, X.; Heeg, T.; Chen, Y. B.; Li, J.; Collins, R. W.; Musfeldt, J. L.; Pan, X. Q.; Schubert, J.; Ramesh, R.; Schlom, D. G., Optical band gap of BiFeO(3) grown by molecular-beam epitaxy. Appl. Phys. Lett. 2008, 92 (14).

    [23]. Xu, Y.; Shen, M. R., Structure and optical properties of nanocrystalline BiFeO3 films prepared by chemical solution deposition. Mater. Lett. 2008, 62 (20), 3600-3602.

    [24]. Clark, S. J.; Robertson, J., Band gap and Schottky barrier heights of multiferroic BiFeO3. In Appl. Phys. Lett., 2007; Vol. 90.

    [25]. Xu, X. S.; Ihlefeld, J. F.; Lee, J. H.; Ezekoye, O. K.; Vlahos, E.; Ramesh, R.; Gopalan, V.; Pan, X. Q.; Schlom, D. G.; Musfeldt, J. L., Tunable band gap in Bi(Fe(1-x)Mn(x))O(3) films. Appl. Phys. Lett. 2010, 96 (19).

    [26]. Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L., Photoconductivity in BiFeO(3) thin films. Appl. Phys. Lett. 2008, 92 (9).

    [27]. Lee, S.; Levi, R. D.; Qu, W. G.; Lee, S. C.; Randall, C. A., Band-gap nonlinearity in perovskite structured solid solutions. J. Appl. Phys. 2010, 107 (2).

    [28]. Lee, S.; Woodford, W. H.; Randall, C. A., Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites. Appl. Phys. Lett. 2008, 92 (20).

    [29]. Deng, H.; Deng, H. M.; Huang, D. J.; Zhu, L. P.; Yang, P. X., Optical properties of BiCr(x)Fe(1-x)O(3) films grown by sol-gel method. In 3rd International Photonics and Optoelectronics Meetings, Ye, C.; Wang, Z. L.; Zhou, B., Eds. Iop Publishing Ltd: Bristol, 2011; Vol. 276.

    [30]. Yang, S. Y., Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 2009.

    [31]. Ji, W.; Yao, K.; Liang, Y. C., Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO(3) Thin Films. Adv. Mater. 2010, 22 (15), 1763-+.

    [32]. T. Choi, e. a., Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3. Science 2009.

    [33]. Yi, H. T.; Choi, T.; Choi, S. G.; Oh, Y. S.; Cheong, S. W., Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3. Adv. Mater. 2011, 23 (30), 3403-+.

    [34]. Yang, S. Y.; Seidel, J.; Byrnes, S. J.; Shafer, P.; Yang, C. H.; Rossell, M. D.; Yu, P.; Chu, Y. H.; Scott, J. F.; Ager, J. W.; Martin, L. W.; Ramesh, R., Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 2010, 5 (2), 143-147.

    [35]. Guo, R.; You, L.; Chen, L.; Wu, D.; Wang, J. L., Photovoltaic property of BiFeO3 thin films with 109 degrees domains. Appl. Phys. Lett. 2011, 99 (12).

    [36]. Seidel, J.; Fu, D. Y.; Yang, S. Y.; Alarcon-Llado, E.; Wu, J. Q.; Ramesh, R.; Ager, J. W., Efficient Photovoltaic Current Generation at Ferroelectric Domain Walls. Phys. Rev. Lett. 2011, 107 (12).

    [37]. Azuma, M.; Kanda, H.; Belik, A. A.; Shimakawa, Y.; Takano, M., Magnetic and structural properties of BiFe1-xMnxO3. J. Magn. Magn. Mater. 2007, 310 (2), 1177-1179.

    [38]. Tauc, J.; Grigorov.R; Vancu, A., OPTICAL PROPERTIES AND ELECTRONIC STRUCTURE OF AMORPHOUS GERMANIUM. Physica Status Solidi 1966, 15 (2), 627-&

    [39]. Wu, J. M.; Chen, C. J., EFFECT OF SINTERING TEMPERATURE ON BOUNDARY SEGREGATION AND DIELECTRIC-PROPERTIES OF (BA, NB)-DOPED TIO2 CERAMICS. Mater. Sci. Eng. B-Solid State Mater. Adv. Technol. 1989, 3 (4), 343-349.

    [40]. Li, Y. W.; Hu, Z. G.; Yue, F. Y.; Yang, P. X.; Qian, Y. N.; Cheng, W. J.; Ma, X. M.; Chu, J. H., Oxygen-vacancy-related dielectric relaxation in BiFeO(3) films grown by pulsed laser deposition. J. Phys. D-Appl. Phys. 2008, 41 (21).

    [41]. Qi, X. D.; Dho, J.; Tomov, R.; Blamire, M. G.; MacManus-Driscoll, J. L., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 2005, 86 (6).

    [42]. Chung, C. F.; Lin, J. P.; Wu, J. M., Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 2006, 88 (24).

    [43]. Wu, C. M.; Hong, T. J.; Wu, T. B., Effects of (100)-textured LaNiO3 electrode on the deposition and characteristics of PbTiO3 thin films prepared by rf magnetron sputtering. J. Mater. Res. 1997, 12 (8), 2158-2164.

    [44]. Chen, M. S.; Wu, J. M.; Wu, T. B., EFFECTS OF (100)-TEXTURED LANIO3 ELECTRODE ON CRYSTALLIZATION AND PROPERTIES OF SOL-GEL-DERIVED PB(ZR0.53TI0.47)O-3 THIN-FILMS. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1995, 34 (9A), 4870-4875.

    [45]. Tseng, T. F.; Yang, C. C.; Liu, K. S.; Wu, J. M.; Wu, T. B.; Lin, I. N., Crystallization characteristics of LaNiO3 layers and their effect on pulsed laser deposited (Pb1-xLax)(ZryTi1-y)O-3 thin films. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1996, 35 (9A), 4743-4749.

    [46]. Shy, H. J.; Wu, T. B., Effects of bottom electrode on the structural and electrical characteristics of barium titanate thin films. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1998, 37 (7), 4049-4055.

    [47]. Shy, H. J.; Wu, T. B., Structural and Electrical Characteristics of Ba(Zr0.12Ti0.88)O3 Thin Films Deposited on LaNiO3 Electrode by RF Magnetron Sputtering. Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 1998, 37 (10), 5638-5644.

    [48]. Choi, E. M.; Patnaik, S.; Weal, E.; Sahonta, S. L.; Wang, H.; Bi, Z.; Xiong, J.; Blamire, M. G.; Jia, Q. X.; MacManus-Driscoll, J. L., Strong room temperature magnetism in highly resistive strained thin films of BiFe(0.5)Mn(0.5)O(3). Appl. Phys. Lett. 2011, 98 (1).

    [49]. Cui, S. G., Enhanced ferroelectric properties in BiFe(0.95)Mn(0.05)O(3) thin films. J. Alloy. Compd. 2010, 508 (2), 520-522.

    [50]. Gu, J. J.; Zhao, G. L.; Cheng, F. W.; Han, J. R.; Liu, L. H.; Sun, H. Y., Magnetoelectric properties of Mn-substituted BiFeO(3) thin films with a TiO(2) barrier. Physica B 2011, 406 (23), 4400-4403.

    [51]. Wen, Z.; Hu, G. D.; Fan, S. H.; Yang, C. H.; Wu, W. B.; Zhou, Y.; Chen, X. M.; Cui, S. G., Effects of annealing process and Mn substitution on structure and ferroelectric properties of BiFeO(3) films. Thin Solid Films 2009, 517 (16), 4497-4501.

    [52]. Yu, X. L.; An, X. Q., Enhanced magnetic and optical properties of pure and (Mn, Sr) doped BiFeO(3) nanocrystals. Solid State Commun. 2009, 149 (17-18), 711-714.

    [53]. Belik, A. A.; Abakumov, A. M.; Tsirlin, A. A.; Hadermann, J.; Kim, J.; Van Tendeloo, G.; Takayama-Muromachi, E., Structure and Magnetic Properties of BiFe(0.75)Mn(0.25)O(3) Perovskite Prepared at Ambient and High Pressure. Chem. Mat. 2011, 23 (20), 4505-4514.

    [54]. Koops, C. G., ON THE DISPERSION OF RESISTIVITY AND DIELECTRIC CONSTANT OF SOME SEMICONDUCTORS AT AUDIOFREQUENCIES. Physical Review 1951, 83 (1), 121-124.

    [55]. Mao, C. L.; Dong, X. L.; Wang, G. S.; Yao, C. H.; Cao, F.; Cao, S.; Yang, L. H.; Wang, Y. L., Grain size dependence of the dielectric properties of Ba0.70Sr0.30TiO3 ceramics and its mechanisms. Acta Phys. Sin. 2009, 58 (8), 5784-5789.

    [56]. Naganuma, H.; Miura, J.; Okamura, S., Ferroelectric, electrical and magnetic properties of Cr, Mn, Co, Ni, Cu added polycrystalline BiFeO(3) films. Appl. Phys. Lett. 2008, 93 (5).

    [57]. Pabst, G. W.; Martin, L. W.; Chu, Y. H.; Ramesh, R., Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 2007, 90 (7).

    [58]. Venkateswarlu, A. R.; Varma, G. D.; Nath, R., Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films. AIP Adv. 2011, 1 (4).

    [59]. Singh, S. K.; Ishiwara, H.; Maruyama, K., Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition. Appl. Phys. Lett. 2006, 88 (26).

    [60]. Wen, Z.; You, L.; Shen, X.; Li, X. F.; Wu, D.; Wang, J. L.; Li, A. D., Multiferroic properties of (Bi(1-x)Pr(x))(Fe(0.95)Mn(0.05))O(3) thin films. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2011, 176 (13), 990-995.

    [61]. Wu, J. G.; Wang, J., Bilayered BiFe(0.95)Mn(0.05)O(3)/Bi(0.90)La(0.10)FeO(3) Thin Films with Low Ferroelectric Coercivity and Large Remanent Polarization. J. Am. Ceram. Soc. 2010, 93 (8), 2113-2116.

    [62]. Kawae, T.; Terauchi, Y.; Nakajima, T.; Okamura, S.; Morimoto, A., Influences of Pr and Mn co-substitution on crystallinity and electric properties of BiFeO(3) thin films. J. Ceram. Soc. Jpn. 2010, 118 (1380), 652-655.

    [63]. Lahmar, A.; Habouti, S.; Solterbeck, C. H.; Dietze, M.; Es-Souni, M., Multiferroic properties of Bi(0.9)Gd(0.1)Fe(0.9)Mn(0.1)O(3) thin film. J. Appl. Phys. 2010, 107 (2).

    [64]. Wu, J. G.; Wang, J., Effects of SrRuO(3) buffer layer thickness on multiferroic (Bi(0.90)La(0.10))(Fe(0.95)Mn(0.05))O(3) thin films. J. Appl. Phys. 2009, 106 (5).

    [65]. Lahmar, A.; Habouti, S.; Solterbeck, C. H.; Es-Souni, M.; Elouadi, B., Correlation between structure, dielectric, and ferroelectric properties in BiFeO(3)-LaMnO(3) solid solution thin films. J. Appl. Phys. 2009, 105 (1).

    [66]. Yang, T.; Abakumov, A. M.; Hadermann, J.; Van Tendeloo, G.; Nowik, I.; Stephens, P. W.; Hemberger, J.; Tsirlin, A. A.; Ramanujachary, K. V.; Lofland, S.; Croft, M.; Ignatov, A.; Sun, J. L.; Greenblatt, M., BiMnFe(2)O(6), a polysynthetically twinned hcp MO structure. Chem. Sci. 2010, 1 (6), 751-762.

    [67]. Atou, T.; Chiba, H.; Ohoyama, K.; Yamaguchi, Y.; Syono, Y., Structure determination of ferromagnetic perovskite BiMnO3. J. Solid State Chem. 1999, 145 (2), 639-642.

    [68]. Jeen, H.; Singh-Bhalla, G.; Mickel, P. R.; Voigt, K.; Morien, C.; Tongay, S.; Hebard, A. F.; Biswas, A., Growth and characterization of multiferroic BiMnO(3) thin films. J. Appl. Phys. 2011, 109 (7).

    [69]. dos Santos, A. M.; Parashar, S.; Raju, A. R.; Zhao, Y. S.; Cheetham, A. K.; Rao, C. N. R., Evidence for the likely occurrence of magnetoferroelectricity in the simple perovskite, BiMnO3. Solid State Commun. 2002, 122 (1-2), 49-52

    [70]. dos Santos, A. M.; Cheetham, A. K.; Atou, T.; Syono, Y.; Yamaguchi, Y.; Ohoyama, K.; Chiba, H.; Rao, C. N. R., Orbital ordering as the determinant for ferromagnetism in biferroic BiMnO3. Phys. Rev. B 2002, 66 (6).

    [71]. Belik, A. A.; Yokosawa, T.; Kimoto, K.; Matsui, Y.; Takayama-Muromachi, E., High-pressure synthesis and properties of solid solutions between BiMnO3 and BiScO3. Chem. Mat. 2007, 19 (7), 1679-1689.

    [72]. Zhong, C. G.; Fang, J. H.; Yang, J. H.; Dong, Z. C.; Jiang, X. F., Electronic and Band Structures of Hexagonal Multiferroic HoMnO(3). Acta Phys.-Chim. Sin. 2011, 27 (2), 388-394.

    [73]. Ren, C. Y., Atomic, electronic, and ferroelectric properties of manganite RMnO(3) (R=Ho,Er,Tm,Lu) in hexagonal and orthorhombic phases. Phys. Rev. B 2009, 79 (12).

    [74]. Choi, W. S.; Moon, S. J.; Seo, S. S. A.; Lee, D.; Lee, J. H.; Murugavel, P.; Noh, T. W.; Lee, Y. S., Optical spectroscopic investigation on the coupling of electronic and magnetic structure in multiferroic hexagonal RMnO_{3} (R=Gd, Tb, Dy, and Ho) thin films. Phys. Rev. B 2008, 78 (5), 054440.

    [75]. Shimizu, Y.; Murata, T., Sol-gel synthesis of perovskite-type lanthanum manganite thin films and fine powders using metal acetylacetonate and poly(vinyl alcohol). J. Am. Ceram. Soc. 1997, 80 (10), 2702-2704.

    [76]. Hur, S. G.; Kim, T. W.; Hwang, S. J.; Choy, J. H., Influences of A- and B-site cations on the physicochernical properties of perovskite-structured A(In1/3Nb1/3B1/3)O-3 (A = Sr, Ba; B = Sn, Pb) photocatalysts. J. Photochem. Photobiol. A-Chem. 2006, 183 (1-2), 176-181.

    [77]. Qi, T. T.; Grinberg, I.; Rappe, A. M., Band-gap engineering via local environment in complex oxides. Phys. Rev. B 2011, 83 (22).

    [78]. Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, P. M., Investigations of the electronic structure of d(0) transition metal oxides belonging to the perovskite family. J. Solid State Chem. 2003, 175 (1), 94-109.

    [79]. Wang, H.; Wang, B.; Li, Q. K.; Zhu, Z. Y.; Wang, R.; Woo, C. H., First-principles study of the cubic perovskites BiMO3 (M=Al, Ga, In, and Sc). Phys. Rev. B 2007, 75 (24).

    [80]. Fei, L. F.; Yuan, J. K.; Hu, Y. M.; Wu, C. Z.; Wang, J. L.; Wang, Y., Visible Light Responsive Perovskite BiFeO3 Pills and Rods with Dominant {111}(c) Facets. Cryst. Growth Des. 2011, 11 (4), 1049-1053.

    [81]. Jin, K. X.; Luo, B. C.; Zhao, S. G.; Wang, J. Y.; Chen, C. L., Leakage Current and Photovoltaic Properties in a Bi2Fe4O9/Si Heterostructure. Chin. Phys. Lett. 2011, 28 (8).

    [82]. Kozakov, A. T.; Kochur, A. G.; Googlev, K. A.; Nikolsky, A. V.; Raevski, I. P.; Smotrakov, V. G.; Yeremkin, V. V., X-ray photoelectron study of the valence state of iron in iron-containing single-crystal (BiFeO3, PbFe1/2Nb1/2O3), and ceramic (BaFe1/2Nb1/2O3) multiferroics. J. Electron Spectrosc. Relat. Phenom. 2011, 184 (1-2), 16-23.

    [83]. Ardizzone, S.; Bianchi, C. L.; Tirelli, D., Mn3O4 and gamma-MnOOH powders, preparation, phase composition and XPS characterisation. Colloid Surf. A-Physicochem. Eng. Asp. 1998, 134 (3), 305-312.

    [84]. Han, Y. F.; Chen, F. X.; Zhong, Z. Y.; Ramesh, K.; Chen, L. W.; Widjaja, E., Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J. Phys. Chem. B 2006, 110 (48), 24450-24456.

    [85]. Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S., Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36 (12), 1564-1574.

    [86]. Wen, Z.; You, L.; Shen, X.; Li, X. F.; Wu, D.; Wang, J. L.; Li, A. D., Multiferroic properties of (Bi(1-x)Pr(x))(Fe(0.95)Mn(0.05))O(3) thin films. Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 2011, 176 (13), 990-995.

    [87]. Quan, Z. C.; Hu, H.; Xu, S.; Liu, W.; Fang, G. J.; Li, M. Y.; Zhao, X. Z., Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO(3) thin films prepared by sol-gel process. J. Sol-Gel Sci. Technol. 2008, 48 (3), 261-266.

    [88]. Nesbitt, H. W.; Banerjee, D., Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Miner. 1998, 83 (3-4), 305-315.

    [89]. Juan, P. C.; Wang, C. H., Electrical characterization of metal-ferroelectric (Mn-substituted BiFeO3)-insulator (HfO2)-semiconductor capacitors for nonvolatile memory applications. Microelectron. Eng. 2009, 86 (7-9), 1845-1848.

    [90]. Wang, Y. P.; Zhou, L.; Zhang, M. F.; Chen, X. Y.; Liu, J. M.; Liu, Z. G., Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 2004, 84 (10), 1731-1733.

    [91]. 鍾金峰,“化學液相法製備BiFeO3氧化物薄膜”,清華大學,碩士論文,(2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE