簡易檢索 / 詳目顯示

研究生: 彭彥嘉
論文名稱: 接觸角對氣泡附著於裝水容器底面現象之研究
Attachment of a Gas Bubble on the Bottom of a Container filled with Liquid
指導教授: 李雄略
Shong-Leih Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 37
中文關鍵詞: 氣泡接觸角表面張力自由液面曲率數值模擬靜態平衡附著幾何解析法微流體系統
外文關鍵詞: bubble, contact angle, surface tension, free surface, curvature, numerical simulation, static equilibrium, attachment, analytic geometry method, micro-fluidic system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微流體系統是近年來世界各國積極投入的一個新興領域,在此微科技的領域裡,表面張力的重要性將大幅提高。本文模擬一圓管沒入液體中,並使圓管頂端與底面有著微米級的間距,接著灌入氣體,於壓力差、重力以及表面張力的作用下,以幾何解析法解出氣泡在微米級的間距之中,未附著下板及附著下板時,氣泡靜態平衡狀態下之形狀。目前國內外對於氣泡附著於的行為研究極少,希望本文所提供的氣泡靜態平衡形狀、壓力、體積等數據,對有志研究的學者,能產生相當程度的助益。


    摘要 I 誌謝 II 目錄 III 圖目錄 V 符號目錄 VI 第一章 緒論 1 1.1前言與動機 1 1.2文獻回顧 2 1.3本文目的 3 第二章 理論分析 5 2.1問題描述 5 2.2氣泡的方程式推導與無因次化 5 2.3 主軸曲率 7 2.4 邊界條件 8 第三章 數值方法 10 3.1 自由液面形狀的計算 10 3.2 計算步驟 10 第四章 結果討論 15 4.1參數的給定 15 4.2 解的探討 15 4.3 其他案例 20 第五章 結論 22 參考文獻 23

    [1] S. V. Gnyloskurenko, A. V. Byakova, O. I. Raychenko, and T. Nakamura, “Influence of wetting conditions of bubble formation at orifice in an inviscid liquid. Transformation of bubble shape and size,” Colloid and Surfaces, Vol. 218, pp. 73-87, 2003.
    [2] A. V. Byakova, S. V. Gnyloskurenko, T. Nakamura, and O. I. Raychenko, “Influence of wetting conditions on bubble formation at orifice in an inviscid liquid. Mechanism of bubble evolution,” Colloids and Surfaces, Vol. 229, pp. 19-32, 2003.
    [3] H. Tsuge, K. Terasaka, W. Koshida, and H. Matsue, “Bubble formation at submerged nozzles for small gas flow rate under low gravity,” Chemical Engineering Science, Vol. 52, pp. 3415-3420, 1997.
    [4] D. H. Yoo, H. Tsuge, K. Terasaka, and K. Mizutani, “Behavior of bubble formation in suspended solution for an elevated pressure system,” Chemical Engineering Science, Vol. 52, pp. 3701-3707, 1997.
    [5] K. Terasaka, and H. Tsuge, “Bubble formation ar a nozzle submerged in viscous liquids having yield,” Chemical Engineering Science, Vol. 56, pp. 3237-3245, 2001.
    [6] K. Terasaka, J. Oka, and H. Tsuge, “Ammonia absorption from a bubble expanding at a submerged orifice into water,” Chemical Engineering Science, Vol. 57, pp. 3757-3765, 2002.
    [7] H. Z. Li, Y. Mouline, and N. Midoux, “Modelling the bubble formation dynamics in non-Newtonian fluids,” Chemical Engineering Science, Vol. 57, pp. 339-346, 2002.
    [8] S. Cao and S. Hayama, “Numerical simulation of a sessile bubble beneath a horizontal solid wall in liquid,” Japanese Journal of Applied Physics, Vol. 40, pp. 1250-1253, 2001.
    [9] O.I. del Rio and A. W. Neumann, “Axisymmetric drop shape analysis:computational methods for the measurement of inrerfacial properties from the shape and dimensions of pendant and sessile drops,” Journal of Colloid and Interface Science, Vol.196, pp.136-147, 1996
    [10] J. S. Allen, “An analytical solution for determination of small contact angles freom sessile drops of arbitary size,” Journal of Colloid and Interface Science, Vol.261, pp. 481-489, 2003
    [11] J. L. Liow, “Quasi-equilibrium bubble formation during top-submerged gas injection,” Chemical Engineering Science, Vol. 55, pp. 4515-4524, 2000.
    [12] S. L. Lee and H. D. Lee, “Evolution of the liquid meniscus in capillary-force-dominant flow,” Proceedings of International Symposium on Advances in Computational Heat Transfer, April 19-24, Norway, Paper Number: CHT-04-151, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE