研究生: |
蔡侃學 Tsai, Ken-Hsiao |
---|---|
論文名稱: |
雙極性氧化鉿電阻式記憶體之電極材料與轉態探討 Study on Electrode Materials and Switching Characteristics of HfO2 Bipolar Resistive Memory |
指導教授: |
連振炘
Lien, Chenhsin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 電阻式記憶體 、氧化鉿 、電極材料 |
外文關鍵詞: | resistive memory, hafnium oxide, electrode matrials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以氧化鉿/鈦化氮/二氧化矽/矽為基板探討上電極效應、電流傳導機制與熱退火效應。在討論上電極效應部分,從鎢及鎢/鈦上電極之結果發現,鎢上電極使元件呈現單極性操作,而鎢/鈦上電極使元件呈現雙極性操作。這裡說明不同的上電極會造成元件操作模式不同,同時鎢/鈦是一個良好的上電極選擇。經過電流傳導機制之討論後,我們可以發現元件在低阻態時是歐姆傳導,而在高阻態時,低電壓區是歐姆傳導,高電壓區是普爾-法蘭克發射。從以上的分析我們可以更了解元件處於高阻態與低阻態時的電流傳導機制。最後在熱退火效應方面,我們可以發現在適當製程溫度條件下可以使耐久度獲得十倍的提升。透過此方法改善使電阻式記憶體更具有發展的潛力。
In this thesis, we discuss on the top electrode effect, current conduction mechanism and annealing effect for the HfO2 based RRAM. At the discussion of the top electrode effect, the W top electrode causes the device to present unipolar operation, but in the W/Ti top electrode present bipolar operation. We may know that top electrode influence the switching characteristic and the polarity of RRAM seriously. Second, the W/Ti/HfO2/TiN device in LRS is the ohmic conduction, but when HRS, the low voltage region (<0.05V) is the ohmic conduction, the high voltage region (>0.1V) is Poole-Frenkel emission. Finally, in the annealing effect, the suitable temperature condition to obtain the 10 times of promotion in endurance. From the result of the annealing effect, we can provide a method to improve endurance and have the development potential.
[1] http://www.teema.org.tw/default.asp (台灣區電機電子工業同業公會全球資訊網)
[2] http://www.tsia.org.tw/Files/ShortMsg/200912216659.pdf
[3] 葉林秀, 李佳謀, 徐明豐, 吳德和, “磁阻式隨機存取記憶體技術的發展—現在與未來,”物理雙月刊 二十六卷四期, 2004.
[4] http://mx.nthu.edu.tw/~yunhwu/Colloquium/Phase_Change_Memory.pdf
[5] A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Sun, and Y. Y. Xue, “Field-driven hysteretic and reversible resistive switch at the Ag–Pr0.7Ca0.3MnO3 interface,” Applied Physics Letters, vol. 83, pp. 957-959, 2003.
[6] M. H. Kryder and C. S. Kim, “After Hard Drives—What Comes Next?,” IEEE Transactions on Magnetic, vol. 45, pp. 3406-3413, 2009.
[7] D. R. Lamb and P. C. Rundle, “A non-filamentary switching action in thermally grown silicon dioxide films, ”Br. J. Appl. Phys., vol. 18, pp. 29-32, 1967.
[8] T. W. Hickmott, “Low-frequency negative resistance in thin anodic oxide films,”J. Appl. Phys., vol. 33, pp. 2669–2682, 1962.
[9] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D. –S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung, and J. T. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses,” in IEDM Tech. Dig., pp. 587-590, 2004.
[10] I. G. Baek, M. S. Lee, S. Seo, MI. G. Baek, D. C. Kim, M. J. Lee, H. –J. Kim, E. K. Yim, M. S. Lee, J. E. Lee, S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K. Yoo, U. –In Chung, J. T. Moon and B. I. Ryu, “Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application,” in IEDM Tech. Dig., pp. 750-753, 2005.
[11] C. H. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, Rich Liu, and C. Y. Lu, “A Highly Reliable Self-Aligned Graded Oxide WOx Resistance Memory: Conduction Mechanisms and Reliability,”Symp. on VLSI Tech. Dig., pp. 228-229, 2007.
[12] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M. Lee, S. Seo, and I. K. Yoo, “Resistance Switching of the Nonstoichiometric Zirconium Oxide for Nonvolatile Memory Applications,” IEEE Electron Device Letters, vol. 26, pp. 719-721, 2005.
[13] A. Chen, S. Haddad, Y. –C. Wu, T. –N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk and M. Taguchi,“Non-volatile resistive switching for advanced memory applications,” in IEDM Tech. Dig., pp. 746-749, 2005.
[14] Y. Hosoi, Y. Tamai, T. Ohnishi, K. Ishihara, T. Shibuya, Y. Inoue, S. Yamazaki, T. Nakano, S. Ohnishi, N. Awaya, H. Inoue, H. Shima, H. Akinaga, H. Takagi, H. Akoh, Y. Tokura, “High Speed Unipolar Switching Resistance RAM (RRAM) Technology ”in IEDM Tech. Dig., pp. 1-4, 2006.
[15] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, Y. Fukano, M. Aoki, Y. Sugiyama, “Low Power and High Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3 V,” in IEDM Tech. Dig., pp. 767-770, 2007.
[16] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, S. Mitani, S. Fujii, K. Katayama, M. Iijima, T. Mikawa, T. Ninomiya, R. Miyanaga, Y. Kawashima, K. Tsuji, A. Himeno, T. Okada,R. Azuma, K. Shimakawa, H. Sugaya, and T. Takagi;R. Yasuhara, K.Horiba, H. Kumigashira, and M. Oshima,“Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism,”in IEDM Tech. Dig., pp. 293-296, 2008.
[17] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface,” Applied Physics Letters, vol. 85, pp. 4073-4075, 2004.
[18] H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E. Lee, W. Kim, Y. Park, I. Yoo and H. Hwang, “Excellent Resistance Switching Characteristics of Pt/SrTiO3 Schottky Junction for Multi-bit Nonvolatile Memory Application,” in IEDM Tech. Dig., pp. 758-761, 2001.
[19] C. Liu, P. Wu, A. Wang, W. Jang, J. Young, K. Chiu, and T. Tseng, “Bistable Resistive Switching of a Sputter-Deposited Cr-doped SrZrO3 Memory Film,” IEEE Electron Device Letters, vol. 26, pp. 351-353, 2005.
[20] R. Waser and M. Aono, “Nanoionics-based resistive switching memories,”Nature Materials, vol. 6, pp. 833-840, 2007.
[21] W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, A.; Y. Wang, S. Q. Liu, N. J. Wu, A. Ignatiev, “Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), ”in IEDM Tech. Dig., pp. 193-196, 2002.
[22] D. C. Kim, M. J. Lee, S. E. Ahn, S. Seo, J. C. Park, I. K. Yoo, I. G. Baek, H. J.Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U–In Chung, J. T. Moon, and B. I. Ryu, “Improvement of resistive memory switching in NiO using IrO2,” Applied Physics Letters, vol. 88, pp. 232106-1~232106-3, 2006.
[23] U. Russo, D. Ielmini, C. Cagli, A. L. Lacaita, S. Spiga, C. Wiemer, M. Perego and M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM,”in IEDM Tech. Dig., pp. 775-778, 2007.
[24] L.F. Liu, J.F. Kang, H. Tang, N. Xu, Y. Wang, X.Y. Liu, X. Zhang, R.Q. Han, “Gd doping improved resistive switching characteristics of TiO2-based resistive memory devices,”Solid State Device and Materials, pp. 836-837, 2007.
[25] J. S. Kwak, Y. H. Do, Y. C. Bae, H. S. Im, J. H. Yoo, M. G. Sung, Y. T. Hwang, and J. P. Hong, “Roles of interfacial TiOxN1−x layer and TiN electrode on bipolar resistive switching in TiN/TiO2 /TiN frameworks,” Applied Physics Letters, vol. 96, pp. 223502-1~223502-3, 2010.
[26] M. Fujimotoa and H. Koyama, “TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching,” Applied Physics Letters, vol. 89, pp. 223509-1~223509-3, 2006.
[27] D. Lee, D. J. Seong, H. J. Choi, I. Jo, R. Dong ,W. Xiang, ,S. Oh, M. Pyun, S. O. Seo, S. Heo, M. Jo, D. K. Hwang, H. K Park, M. Chang, M. Hasan, and H. Hwang, “Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications,”in IEDM Tech. Dig., 2006.
[28] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, “Low Power and High Speed Bipolar Switching with A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” in IEDM Tech. Dig., pp. 297-300, 2008.
[29] A. Sawa, “Resistive switching in transition metal oxide,”Materials Today, vol. 11(6), pp.28-36, 2008.
[30] C. Cagli, D. Ielmini, F. Nardi and A. L. Lacaita, “Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction,” in IEDM Tech. Dig., pp. 301-304, 2008.
[31] C. Schindler, M. Meier, R. Waser, M.N. Kozicki, “Resistive switching in Ag-Ge-Se with extremely low write currents,” Non-Volatile Memory Technology Symposium, pp. 82-85, 2007.
[32] N. Xu, B. Gao, L.F. Liu, Bing Sun, X.Y. Liu, R.Q. Han, J.F. Kang, and B. Yu,“A Unified Physical Model of Switching Behavior in Oxide-Based RRAM,” Symp. on VLSI Tech. Dig., pp. 100-101, 2008.
[33] B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu, Y.Y. Wang, “Oxide-Based RRAM Switching Mechanism: A New Ion-Transport-Recombination Model,” in IEDM Tech. Dig., pp. 1-4, 2008.
[34] C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L. Yang, C. Hu, and T. Y. Tseng, “Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices,” IEEE Electron Device Letters, vol. 28, pp. 366-368, 2007.
[35] L. Zhang, R. Huang, M. Zhu, S. Qin, Y. Kuang, D. Gao, C. Shi, and Y. Wang, “Unipolar TaOx-Based Resistive Change Memory Realized With Electrode Engineering,”IEEE Electron Device Letters, vol. 31, pp. 966-968, 2010.
[36] H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M. J. Tsai, and C. H. Lien, “Electrical evidence of unstable anodic interface in Ru/HfOx/TiN unipolar resistive memory,” Applied Physics Letters, vol. 92, pp. 142911-1~142911-3, 2008.
[37] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, F. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, M. J. Tsai, and C. H. Lien, “HfOx Bipolar Resistive Memory With Robust Endurance Using AlCu as Buffer Electrode” IEEE Electron Device Letters, vol. 30, pp. 703-705, 2009.
[38] Y. Wu, B. Lee and H. -S. Philip Wong, “Ultra-Low Power Al2O3-based RRAM with 1μA Reset Current,” Symp. on VLSI Tech. Dig., pp. 136-137, 2010.
[39] Y. H. Do, J. S. Kwak, Y. C. Bae, K. Jung, H. Im, and J. P. Hong, “Hysteretic bipolar resistive switching characteristics in TiO2 /TiO2-x multilayer homojunctions,” Applied Physics Letters, vol. 95, 093507-1~093507-3, 2009.
[40] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang and B. Yu, “Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention,” Semicond. Sci. Technol., vol. 23, pp. 075019-1~075019, 2008.
[41] Y. M. Kim and J. S. Lee, “Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices,”J. Appl. Phys, vol. 104, pp. 114115-1~114115-6, 2008.
[42] G. He, M. Liu, L. Q. Zhu, M. Chang, Q. Fang, L. D. Zhang, “Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100),” Surface Science 576, pp. 67-75, 2005.
[43] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. J. Oh, H. J. Kim, C. S. Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, “Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition,” J. Appl. Phys., vol. 98, pp. 033715-1~03715-10, 2005.