簡易檢索 / 詳目顯示

研究生: 吳明軒
Wu, Ming-Hsuan
論文名稱: 色安定與色溫可調變白色有機發光元件研製
Fabrication Study of Color-Stable and Color-Temperature-Tunable White Organic Light-Emitting Devices
指導教授: 周卓煇
Jou, Jwo-Huei
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 120
中文關鍵詞: 有機發光二極體色安定色溫可調變
外文關鍵詞: organic light-emitting diode, color-stable, color-temperature tunable
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究從元件結構設計的角度,探討如何製備高色安定性及色溫可調變白色有機發光二極體;在研究中,以一高自發光性之螢光藍光有機發光材料2-(N,N-diphenyl-amino)-6-[4-N,N-diphenylamino)styryl]naphthalene (DPASN)作為主體,搭配其他光色的染料;配合及單一發光層,或是多發光層之元件結構設計,分別製備高色安定性螢光白光有機發光二極體,以及色溫可調變有機發光二極體。
    第一部份中,先使用DPASN,製備高效率螢光藍光有機發光二極體,元件在亮度100 cd/m2下之能量效率可達6 lm/W,CIE色座標為(0.16, 0.17);隨後,以DPASN為主體,搭配一橘黃光染料5,6,11,12-tetra-phenylnaphthacene,製備出高效率高色安定性之白光有機發光二極體,在亮度100 cd/m2時,發光效率可達9.5 lm/W,且在亮度由100增加至10,000 cd/m2時,其光色座標由(0.321, 0.357)改變至(0.315, 0.344),色偏僅有(0.006, 0.013);此白光OLED元件結構的設計,使得電子、電洞能有效被侷限在單一發光層中,載子再結合區域不易因電壓變化而產生偏移,使元件光色呈現高色安定性;同時,其發光層結構設計,亦避免激子在客體分子上產生淬熄,而減輕了在高電壓下,因激子淬熄而導致的光色藍位移現象。
    第二部份中,以DPASN作為主體,搭配綠光發光染料bis[(p-isopropylohenyl)(p-tolyl)amino]-10-10’-phenanthracene,紅光發光染料4-(dicyanomethylene)-2-tertbutyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl-4H-pryan,製備一色溫可調變有機發光二極體;元件在不同電壓下,可發出2,300至8,200K之光色,完全涵蓋日光在不同時間及地區下之色溫變化;與色安定性元件的發光層結構設計相反,此元件採用多發光層結構,以及一薄層載子調制層的設計,可使載子再結合區域隨著電壓的變化,在藍、綠、紅光發光層中產生偏移,即再結合區域可從低電壓時靠近陰極處,高電壓時在移動到較靠近陽極的位置,如此一來,便能使得元件光色隨電壓不同而產生寬廣的色溫變化。


    In this study, fabrications of highly color-stable and color-temperature tunable organic light-emitting diodes (OLEDs) are investigated from the viewpoint of device architecture. A highly electroluminescent blue fluorescent emitter 2-(N,N-diphenyl-amino)-6-[4-N,N-diphenyl-amino)styryl]naphthalene (DPASN) is employed as the host and doped with other emitters to fabricate highly color-stable fluorescent white OLED or color-temperature tunable OLED in single-emissive-layer or multi-emissive-layers device architecture.
    In the first part, the high-efficiency fluorescent blue OLED using DPASN exhibits a power efficiency of 6 lm/W at 100 cd/m2, with CIE coordinates of (0.16, 0.17). Using DPASN as the host and doping an orange emitter of 5,6,11,12-tetra-phenylnaphthacene, a highly efficient and highly color-stable white OLED is fabricated with an efficiency of 9.5 lm/W at 100 cd/m2. The CIE coordinates of which deviate from (0.321, 0.357) to (0.315, 0.344) as the luminance increasing from 100 to 10,000 cd/m2, showing a slight chromaticity deviation of (0.006, 0.013). The device architecture in this white OLED confines electrons and holes effectively within the single emissive layer, preventing recombination zone shift caused by voltage variation and consequently having the emission to be highly color-stable. In addition, the emissive-layer architecture design may prevent excessive exciton quenching on guest, reducing exciton-quench-causing blue shift phenomenon at high voltages.
    In the second part, DPASN is employed as the host, doped with green emitter of bis[(p-isopropylphenyl)(p-tolyl)amino]-10-10’-phenanthracene and red emitter of 4-(dicyanomethylene)-2-tertbutyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl-4H-pyran to fabricate color-temperature tunable OLED. The device is capable of yielding an illumination with color-temperature ranging between 2300 and 8200 K, fully covering those of the entire daylight at different times and regions. Opposite to the emissive architecture design of the color-stable device, the color-temperature tunable device employs multi-emissive layers and a thin carrier-modulation layer architecture to have the recombination zone shift along the blue, green and red emissive layers with voltage variation. The recombination core is capable to shift from the cathode side at low voltage to the anode side at high voltage, consequently to have the device yield a relatively wide color-temperature span.

    目錄 中文摘要.................................................................................................................... I 英文摘要..................................................................................................................III 誌謝...........................................................................................................................V 目錄.......................................................................................................................VIII 表目錄..................................................................................................................... XI 圖目錄....................................................................................................................XII 壹、緒論....................................................................................................................1 貳、文獻回顧............................................................................................................6 2-1 有機發光二極體的歷史發展.....................................................................6 2-2 發光原理...................................................................................................18 2-3 有機發光二極體材料之發展...................................................................28 2-3-1 陽極材料.........................................................................................28 2-3-2 電洞傳輸材料.................................................................................29 2-3-3 電子傳輸材料.................................................................................30 2-3-4 電子注入材料.................................................................................31 2-3-5 陰極材料.........................................................................................32 2-4 白光有機發光二極體之發展...................................................................33 2-4-1 單層發光白光元件.........................................................................36 肆、結果與討論......................................................................................................68 4-1 高效率螢光藍光有機發光二極體...........................................................68 4-1-1 元件結構.........................................................................................68 4-1-2 藍光發光材料對元件發光效能之影響.........................................69 4-1-3 電洞傳輸材料對元件發光效能之影響.........................................74 4-2 高效率高色孜定性白光有機發光二極體111 ..........................................77 4-2-1 雙波段白光OLED 元件結構........................................................77 4-2-2 染料摻雜濃度對元件效能之影響.................................................79 4-2-3 高色孜定性發光層結構.................................................................88 4-3 色溫可調變有機發光二極體113 ...............................................................91 4-3-1 元件結構.........................................................................................93 4-3-2 電洞調制層厚度對元件光色之影響.............................................94 4-3-3 電洞調制層位置對元件光色之影響.............................................96 4-3-4 發光層順序對元件光色之影響.....................................................97 4-3-5 染料攙雜濃度對元件光色之影響.................................................99 4-3-6 最佳元件效能表現.......................................................................101 伍、結論................................................................................................................105 陸、參考文獻........................................................................................................107 柒、附錄................................................................................................................116

    1. Commission Internationale de L‟eclairage (CIE), Method of measuring and
    specifying colour rendering properties of light sources, Publication Report No.
    13.2 (1974)
    2. Commission Internationale de L‟eclairage (CIE), Colorimetry, Publication
    Report No. 15.2 (1986)
    3. Lighting Handbook, 8th ed. IESNA, New York (1993)
    4. S. Mőller and S. R. Forrest, J. Appl. Phys. 91, 5, 3324 (2002)
    5. R. F. Service, Science 310, 1762 (2005)
    6. Y. Sun, S. R. Forrest, Nature Photonics 2 (8), 483 (2008)
    7. Y. S. Tyan, Y. Q. Rao, J. S. Wang, R. Kesel, T. R. Cushman, and W. J. Begley,
    SID 08 Digest, 61.2, p933 (2008)
    8. R. C. Kwong, S. Lamansky, M. E. Thompson, Adv. Mater. 12, 1134 (2000).
    9. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Appl. Phys. Lett. 79, 156
    (2001).
    10.Z. Y. Xie, L. S. Hung, S. T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
    11.F. Nüesch, D. Berner, E. Tutiš, M. Schaer, C. Ma, X. Wang, B. Zhang, L.
    Zuppiroli, Adv. Funct. Mater. 15, 323 (2005).
    12.R. Duggal, J. J. Shiang, C. M. Heller, D. F. Foust, Appl. Phys. Lett. 80, 3470
    (2002)
    13.Bernanose, M. Conet, P. Vouauzx, J. Chem. Phys. 50, 64 (1953).
    14.P. Pope, H. P. Kallmann, and P. J. Magnante, Chem. Phys. 38, 2042 (1963).
    15. W. Helfrich, W. G. Schneider, Phys. Rev. Lett. 14, 229 (1965).
    16. W. Helfrich, W. G. Schneider, J. Chem. Phys. 44, 2902 (1966).
    17.P. S. Vincett, W. A. Barlow, R. A. Hann, G. G. Robert, Solid Thin Films, 94,
    171 (1982).
    18.C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)
    19.S. A. VanSlyke, C. W. Tang, and L. C. Robert, US. Patent 1988, No. 4,720,432.
    20. (a) C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610
    (1989). (b)V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I.
    Djurovich, M. E. Thompson, C. Adachi, B. W. D‟Andrade, S. R. Forrest, New J.
    Chem., 26, 1171 (2002)
    21. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R.
    H. Friend, P. L. Burn, and A. B. Holmes, Nature 347, 539 (1990)
    22. R. H. Friend, J. H. Burroughes, and D. D. C. Bradley, US. Patent 1993, No.
    5,247,190.
    23. C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 27, 713 (1988).
    24. M. Era, C. Adachi, T. Tsutsui, S. Saito, Chem. Phys. Lett. 178, 488 (1991).
    25. J. Kido, M. Kohda, K. Okuyama, K. Nagai, Appl. Phys. Lett. 61, 761 (1992).
    26. J. Kido, M. Kimura, K. Nagai, Science, 267, 1332 (1995).
    27. J. Shi, C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997).
    28. G. E. Jebbour, B. Kippelen, N. R. Armstrong, N. Peyghambarian, Appl. Phys.
    Lett. 73, 1185 (1998).
    29. J. Kido, T. Mazukami, US. Patent 2000, No. 6,013,384.
    30. M. A. Baldo, D. F. O‟Brien, Y. You, A. Shoustikov, S. Slbley, M. E.
    Thompson, S. R. Forrest, Nature 195, 151 (1998).
    31. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest,
    Appl. Phys. Lett. 75, 1 (1999)
    32. J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett.
    80, 1 (2002)
    33. Y. Sun, N. C. Giebink, H. Kanno, B Ma, M. E. Thompson, and S. R. Forrest,
    Nature 440, 04645 (2006).
    34. Y. Shao, Y. Yang, Appl. Phys. Lett. 86, 073510 (2005)
    35. J. H. Jou, Y. S. Chiu, C. P. Wang, R. Y. Wang, and H. C. Hu, Appl. Phys. Lett.
    88, 193501 (2006)
    36. Dodabalapur, Bell Lab. Solid State Com. 102, 259 (1997).
    37. W. D. Gill, J. Appl. Phys. 43, 5033 (1972).
    38. U. Wolf, V. I. Arkhipov, H. Bässler, Phys. Rev. B, 59, 7507 (1999).
    39. M. A. Lampert, P. Mark, Current Injection in Solids 1970, New York,
    Academic Press.
    40. P. N. Murgatroyd, J. Phys. D, 3, 151 (1970).
    41.S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices,
    Gordon and Breach Science Publishers, Chap 1 (1997).
    42.K. Sugiyama, D. Yoshimura, T. Miyamae, T. Miyazaki, H. Ishii, Y. Ouchi, K.
    Seki, J. Appl. Phys. 83, 4928 (1998).
    43. T. Förster, Ann. Phys. 6, 55 (1948).
    44. L. Dexter, J. Chem. Phys. 21, 836 (1953).
    45. 陳金鑫, 黃孝文, OLED 有機電激發光材料與元件(2005)
    46. M. Klessonger, J. Michl, ”Excited Stated and Photochemistry of Organic
    Molecules”, VCH Publishers, New York (1995)
    47. S. R. Forrest, International Display Manufacturing Conference (IDMC) (2003)
    48. S. Miyata, H. S. Nalwa, Organic Electroluminescent Materials and Devices,
    Gordon and Breach Science Publishers, 1997, Chap 9.
    49. M. Ishii, T. Mori, H. Fujikawa, S. Tokito, Y. Taga, Journal of Luminescence,
    87, 1165 (2000).
    50. J. S. Kim, M. Granström, R. H. Frienf, N. Johansson, W. R. Salaneck, R. Daik,
    W. J. Feast, F Cacialli, J. Appl. Phys. 84, 6859 (1998).
    51. S. K. Sol, W. K. Choi, C. H. Cheng, L. M. Leung, C. F. Kwong, Appl. Phys. A,
    68, 447 (1999).
    52. M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, M. Wang, J.
    Appl. Phys. 86, 1688 (1999).
    53.K. A. Higginson, X. Zhang, F. Padaimitrakoppulos, Chem. Mater. 10, 1017
    (1998).
    54.S. A. VanSlyke, C. H. Chen, C. W. Tang, US. Patent 1991, No. 5,061,569.
    55.C. Hosokawa, H. Higashi, T. Kusumoto, Appl. Phys. Lett. 62, 3238 (1993).
    56.S. A. VanSlyke, C. H. Chen, C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996).
    57.J. Pommerehne, H. Vestweber, W. Guss, R. F. Mahrt, H. Bassler, M. Porsch, S.
    Yi, Adv. Mater. 7, 551 (1995).
    58.C. Adachi, T. Tsutsui, S. Satio, Appl. Phys. Lett. 56, 799 (1990).
    59. J. Shi, C. W. Tang, C. H. Chen, US. Patent 1997, No. 5,646,948.
    60.T. Wakimoto, Y. Fukuda, K, Nagayama, A. Yokoi, H. Nakada, M. Tsuchida,
    IEEE Trans. Electron. Device, 44, 1245 (1997).
    61.C Ganzorig, K Suga, M. Fujihira, Mater. Sci. Eng. B 85, 140 (2001).
    62.T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, T. Butler, J. H.
    Burroughes, F. Cacialli, J. Appl. Phys. 93, 6159 (2003)
    63.S. E. Shaheen, G. E. Jabbour, M. M. Morrell, Y. Kawabe, B. Kippelen, N.
    Peyghambarian, M. F. Nabor, R. Schlaf, E. A. Mash, N. R. Armstrong, Appl.
    Phys. Lett. 84, 2324 (1998).
    64.T. Mori, H. Fujikawa, S. Tokito, V. Taga, Appl. Phys. Lett. 73, 2763 (1998).
    65.H. Heil, J. Steiger, S. Karg, M. Gastel, H. Ortner, H. Von Seggern, M. Stoβel, J.
    Appl. Phys. 89, 420 (2001)
    66.L. S. Hung, and C. W. Tang, US. Patent 1997, No. 5,677,572.
    67.M. A. Baldo, D. F. Brlen, and S. R. Forrect, US. Patent 2000, No. 6,097,147.
    68.Commission Internationale de L‟eclairage (CIE), Colorimetry, Publication
    Report No. 15.2, (1986).
    69.J. Kido, K. Hongawa, K. Okuyama, K. Nagai, Appl. Phys. Lett. 64, 815 (1994).
    70.J. Kido, H. Shionoya, K. Nagai, Appl. Phys. Lett. 67, 2281 (1995).
    71.B. W. D‟Andrade, R. J. Holmes, S. R. Forrest, Adv. Mater. 16, 624 (2004).
    72.J. H. Jou, Y. S. Chiu, R. Y. Wang, C. P. Wang, Y. C. Huang, C. S. Lin, C. H.
    Cheng, C. I. Chao, “White Organic Light Emitting Diodes with Phosphorescent
    Iridium Complexes Co-doped in One Single Emission Layer”, 2005 IDMC
    International Display Manufacturing Conference and Exhibition, Taipei, (2005).
    73.J. H. Jou, Y. S. Chiu, R. Y. Wang, H. C. Hu, C. P. Wang, and H. W. Lin, Org.
    Electron. 7, 8 (2005).
    74.J. H. Jou, M. H. Wu, C. P. Wang, Yung-Sheng Chiu, P. H. Chiang, H. C. Hu, R.
    Y. Wang, Org. Electron. 8, 735 (2007).
    75.J. H. Jou, M. F. Hsu, W. B. Wang, C. P. Liu, Z. C. Wong, J. J. Shyue, C. C.
    Chiang, Org. Electron. 9, 291 (2008).
    76.S. Naka, K. Shinno, and H. Anada, Electron. Trans. IEICE. 80, 1114 (1997)
    77.C. H. Chuen, Y. T. Tao, Appl. Phy. Lett. 81, 4499 (2002).
    78.C. H. Chuen, Y. T. Tao, F. I. Wu, and C. F. Shu, Appl. Phy. Lett. 85, 4609
    (2004).
    79.林瑋哲, 碩士論文, 國立清華大學材料科學與工程研究所(2004).
    80.G. Lei, L. Wang, and Y. Qiu, Appl. Phys. Lett. 85, 5403 (2004).
    81.J. H. Jou, C. P. Wang, M. H. Wu, P. H. Chiang, H. W. Lin, H. C. Li, R. S. Liu.
    Org. Electron. 8, 29 (2007).
    82.Q. X. Tong, S. L. Lai, M. Y. Chan, J. X. Tang, H. L. Kwong, C. S. Lee, S. T.
    Lee, Appl. Phys. Lett. 91, 023503 (2007).
    83.R. H. Jordan, A. Dodabalapur, M. Strukelj, and T. M. Miller, Appl. Phys. Lett.
    68, 1192 (1996).
    84.S. R. Forrest, R. S. Desphande, and V. Bulovic, Appl. Phys. Lett. 75, 888 (1999).
    85.Y. S. Huang, J. H. Jou, W. K. Weng, and J. M. Liu, Appl. Phys. Lett. 80, 2782
    (2002).
    86.G. Cheng, F. Li, Y. Duan, J. Feng, S. Liu, S. Qiu, D. Lin, Y. Ma, and S. T. Lee,
    Appl. Phys. Lett. 82, 4224 (2003).
    87.Y. F. Zhang, G Cheng, Y. Zhao, J. Y. Hou, and S. Y. Liu, Appl. Phys. Lett. 86,
    011112 (2005).
    88.H. Kanno, Y. Sun, S. R. Forrest, Appl. Phys. Lett. 89, 143516 (2006).
    89.S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K.
    Leo, Nature 459, 234 (2009)
    90.Kido, Organic Electroluminescence Material and Display, 2001, Chap17.
    91.Kido, Organic Electroluminescence Material and Display, 2001, Chap23.
    92.G. Li, and J. Shinar, Appl. Phys. Lett. 83, 5241 (2003).
    93.S. Tokito, T. Iijima, T. Tsuzuki, and F. Sato, Appl. Phys. Lett. 83, 2459 (2003).
    94.G. Cheng, Y. Zhao, Y. Zhang, S. Liu, F. He, H. Zhang, and Y. Ma, Appl. Phys.
    Lett. 84, 4457 (2004).
    95.T. S. Liu, Y. S. Wu, M. T. Lee, H. H. Chen, C. H. Liao, and C. H. Chen, Appl.
    Phys. Lett. 85, 4304 (2004).
    96.G. Lei, L. Wang, and Y. Qiu, Appl. Phys. Lett. 85, 5403 (2004).
    97.Y. C. Tsai, J. H. Jou, Appl. Phys. Lett. 89, 243521 (2006).
    98.S. J. Su, E. Gonmori, H. Sasabe and J. Kido, Adv. Mater. 20, 4189 (2008)
    99.J. Lee, J. I. Lee, H. Y. Chu, Syntheic Metals 159, 991 (2009)
    100. B. Qu, Z. Chen, F. Xu, H. Cao, Z. Lan, Z. Wang and Q. Gong, Org. Electron.
    8, 529-534 (2007)
    101. Y. S. Park, J. W. Kang, D. M. Kang, J. W. Park, Y. H. Kim, S. K. Kwon and
    J. J. Kim, Adv. Mater. 20, 1957-1961 (2008)
    102. P. Chen, Q. Xue, W. Xie, Y. Duan, G. Xie, Y. Zhao, J. Hou, S. Liu, L.
    Zhang and B. Li, Appl. Phys. Lett. 93, 153508 (2008)
    103. K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, Org. Electon. 10, 384-387
    (2009)
    104. K. S. Yook, S. O. Jeon, C. W. Joo and J. Y. Lee, Syntheic Metals 159, 1778
    (2009)
    105. P. E. Burrows, S. R. Forrest, S. P. Sibley and M. E. Thompson, Appl. Phys.
    Lett. 69(20), 2959 (1996)
    106. S. S. Lee, T. J. Song and S, M. Cho, Mater. Sci. Eng. B95, 24-28 (2002)
    107. C. H. Chen and H. F. Meng, Appl. Phys. Lett. 86, 201102 (2005)
    108. W. X. Li, J. Hagen, R. Jones, J. Heikenfeld and A. J. Steckl, Solid-State
    Electron. 51, 500-504 (2007)
    109. S. Tao, Z. Peng, X. Zhang, P. Wang, C. S. Lee and S. T. Lee, Adv. Func.
    Mater. 15, 1716 (2005)
    110. M. Stolka. J. F. Yanus and D. M. Pai, J. Phys. Chem. 88, 4707 (1988)
    111. J. H. Jou, C. J. Wang, Y. P. Lin, Y. C. Chung, P. H. Chiang, M. H. Wu, C. P.
    Wang, C. L. Lai and C. Chang, Appl. Phys. Lett. 92, 223504 (2008)
    112. F. Nüesch, D. Berner, E Tutiš, M. Sschaer, C. Ma, X, Wang, B Zhang, L
    Zuppiroli, Adv. Funct. Mater. 15, 2 (2005)
    113. J. H. Jou, M. H. Wu, S. M. Shen, H. C. Wang, S. Z. Chen, S. H. Chen, C. R.
    Lin and Y. L. Hsieh, Appl. Phys. Lett. 95, 013307 (2009)
    114.A. P.Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chem. Mater. 16,
    4556 (2004)
    115.G. Hughes and M. R. Bryce, J. Mater. Chem. 15, 94 (2005)
    116. F. Zhang, Y. Wang, X. Yang, Y. Hou, Z. Xu, X. Xu, R. Zhang and Z. Huang,
    J. Lumin. 87, 1149 (2000)
    117.Y. Wang, F. Tang, C. Ma, Z. Xu, Y. Hou, S. Yang, Y. Yang, and X. Xu,
    Displays 25, 237 (2004)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE