研究生: |
黃國華 Huang, Kuo Hua |
---|---|
論文名稱: |
無膠系軟性銅箔/聚亞醯胺之匹配性質與老化壽期研究 Evaluation of Compatible Property and Aging Lifetime in Adhesiveless Copper/Polyimide |
指導教授: |
杜正恭
Duh, Jenq Gong |
口試委員: |
王志華
Wang, Zhi Hua 李志偉 Lee, Zhi Wei 陳柏宇 Chen, Po Yu 吳志明 Wu, Zhi Ming 杜正恭 Duh, Jenq Gong |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 無膠系銅箔/聚亞醯胺 、85 °C/85% RH 、老化壽期 |
外文關鍵詞: | Copper/Polyimide, 85 °C/85% RH, aging lifetime |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
藉由環境應力、剝離與往復荷重測試等機械性質評估,嘗試鑑別無膠系銅箔/聚亞醯胺(Cu/PI)之機械性質、可靠度準則及產品生命週期。利用一系列不同結構厚度的Cu/PI試片進行,不同的機械性質表現可利用統計歸納的方式進行比較。在剝離測試下,18μm的銅箔搭配20μm的PI膜於溫度85 °C及相對溼度85% 操作條件下表現較佳的接合強度特性。可預期的,試片在經歷85 °C/85% RH 與150 °C、240h等環境應力測試,並與室溫下正常儲存3年的產品進行機械可靠度性質比較,其結果與高濕、高溫狀態(85 °C/85% RH)相近,並將依此作為產品壽期預測準則。
由於機械應力累積因素,Cu/PI試片經由往復荷重測試其失效區域均落在靠近銅(Cu)箔端的界面,其中探討裂隙與不同Cu/PI結構厚度關聯性可藉由荷重測試儀QC-104 COMETECH 及電子顯微鏡(FE-SEM) 進行確認。經分析研判,影響銅箔端裂隙生成主要是來自不同的PI膜厚度,同時藉由微觀結構評估及不同機械性質測試 可進一步確認其失效模式及裂隙成長機制。
本研究主要以系統化的測試方式針對不同結構厚度Cu/PI進行機械性質評估。另外,經由大量數據分析明確定義Cu/PI在印刷電路板(PCB)及電子產業的生命應用週期及表面品質改善的關鍵因素,最佳提升生產良率的條件是在組裝前進行表面潔淨度控制。希望藉由上述的模式建立與分析結果,對蓬勃發展的PCB及電子產業有所貢獻。
The criteria of reliability, mechanical property and aging lifetime in adhesiveless copper/polyimide (Cu/PI) can be identified and described by distinct environmental stress testing, peel strength testing and cyclic loading testing. Systematic samples of various assembly structural thickness of Cu/PI were employed and investigated in this study. The statistical values of mechanical performances were calculated and compared. In peel strength, better adhesive performance of the PI film was set as 20 μm and copper to 18 μm. However, the comparative calculations of the better peel performance at 85 °C/85% RH condition. It is expected that through comparison between 85 °C/85% RH and 150 °C after 240h in mechanical reliability, a criterion of lifetime can be predicted by 85 °C/85% RH which has been used to realize the changes occurred during operation or storage in real situations. To compare with the identical structures were maintained at room temperature and normal relative humidity for a period of three years. The results are close to those obtained for the 85 °C/85% RH conditions. It is assured that this test can be applied to predict the lifetime following a period of three years.
Most failure regions existed at interface of Cu side in cyclic loading test due to the stress accumulation. The correlation between the crack generation and different structural Cu/PI composite were established on the QC-104 COMETECH test machine via field-emission scanning electron microscopy (FE-SEM). According to the trend, the Cu influence was focused in both attachment and assembly with various PI film. The microstructure evolution, different mechanical reliability vehicle, failure mode and crack generation of Cu in the attachment and assembly with critical PI film thickness.
This research is to set up a systematic method to evaluate the mechanical reliability in different construction of Cu/PI composite. In addition, a large amount of data base were collected to identify the relationship of lifetime and to reveal the critical factor of surface improvement for attached Cu/PI in the PCBs and electronic industries. The optimal conditions for the surface cleaning could be pre-controlled in the attachment Cu/PI assembly, and the yield enhancement in fabrication was further conducted. It is expected that the effort and results in this study should provide a potential contribution for PCBs and electronic industries.
References
1. H. D. Merchant, M. G. Minor, J. Electron. Mater. 28 (1999) 997
2. H. D. Merchant, J. Electron. Mater. 26 (1997) 833
3. T. R. Bergstresser, N. E. Bergkessel, C. A. Poutasse, Proc. of IPC 4th Annual National Conference on Flexible Circuits.(1998) 15
4. T. R. Bergstresser, N. E. Bergkessel, C.A. Poutasse, Proc. of IPC 4th Annual National Conference on Flexible Circuits. (1998) 354
5. F. Barlow, A. Lostetter, A. Elshabini, Microelectron. Reliab. 42 (2002) 1091
6. B. Noh, J. Yoon, B. Lee, S. Jung, J. Mater. Sci. : Mater. Electron. 22 (2011) 790
7. H. D. Merchant, M. G. Minor, S. J. Clouser, D. T. Leonard, Circuit World. 25 (1998) 38.
8. E. Liston, L. Martinu, M. Wertheimer, J. Adhes. Sci. Technol. 7 (1993) 1091
9. L.P. Buchwalter, K. Holloway, J. Adhes. Sci. Technol. 12 (1998) 95
10. T. Hatano, Y. Kurosawa, J. Miyake, J. Electron. Mater. 29 (1999) 611
11. S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202 (2007) 1084
12. S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, N. Fukuda, K. Sudoh, J. Adhesion. 63 (1997) 309
13. J. Dong, G. Ji, G. Xue, J. Polym. Sci., Part B : Polym. Phys (1992) 30
14. H. D. Merchant, M. G. Minor and M. G. Rozboril: Proc. of the IPC
3rd Annual Flexible Circuits National Conference, ( IPC, Pheonix, Arizona, 1997).
15. W. A. MacDonald, M. K. Looney, D. Eveson and K. Rakos: Plastic,
Rubber and Composite. 37 (2008) 41.
16. A. M. Workman, A. Jeans and S. Braymen: SPIE Proc. 8323 (2012)
83231K11.
17. T. R. Bergstresser, N. E. Bergkessel and C.A. Poutasse: Proc. of the
Fifth International Conference on Flexible Circuit, (STC, San Jose, CA, 1998).
18. S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, N. Fukuda and K.
Sudoh: J. Adhesion. 63 (1997) 309.
20. E. Liston, L. Martinu and M. Wertheimer: J. Adhes. Sci. Technol. 7
(1993) 1091.
21. L.P. Buchwalter and K. Holloway: J. Adhes. Sci. Technol. 12 (1998)
95.
22. F. Barlow, A. Lostetter and A. Elshabini: Microelectron. Reliab. 42
(2002) 1091.
23. B. Noh, J. Yoon, B. Lee and S. Jung: Journal of Materials Science:
Material in Electronics. 22 (2011) 790.
24. H. D. Merchant, M. G. Minor, S. J. Clouser, and D. T. Leonard:
Circuit World. 25 (1998) 38.
25. T. R. Bergstresser, N. E. Bergkessel, S. K. Chiang, C. A. Poutasse and
D. B. Russell: Proc. 4th Int. Conf. on Flexible Circuits,
(Semiconductor Technology Center, San Jose, CA, 1997).
26. A. L. Volinskii, S. L. Bazenov, O. V. Lebedeva, A. N. Ozerin and N.
F. Bakeev: J. Appl. Polymer Science. 72 (1999) 1267.
27. J. Dong, G. Ji and G. Xue : J. Polym. Sci., Part B : Polym. Phys. 30
(1992).
28. S. K. Kudaikulova, R. M. Iskakov and I. V. Razumovskaja: SPIE
Proc. 7009 (2008) 700914.
29. A. T. Zehnder and A. R. Ingraffea: IEEE Transactions on Composite,
Package, and Manufacturing Technology. 18 (1995) 704.
30. S.L. Bazhenov: Composites. 26 (1995) 125.
31. C.M. Lee, J.H. Lim, S.M. Hwang, E.C. Park, J.H. Shim, J.H. Park, J. Joo and S.B., Jung, “Characterization of flexible copper laminates fabricated by Cu electro-plating process”, trans Nonferrous Met. Soc. China., 19 (2009) 965.
32. J.H. Lim, J. Joo, S.B. Jung, S.M. Hwang, C.M. Lee, “Flexible conductive polyimide substrate with fine wiring and method for manufacturing ”, The Korean Intellectual Property Office, 2007.
33. C.Y. Lee, J.H. Lee, D.H. Choi, H.J. Lee, H.S. Kim, S.B. Jung W.C. Moon, “Effects of nodule treatment of rolled copper on the mechanical properties of flexible copper-clad laminate”, J. Microelectronic Engineering., 84 (2007) 2653.
34. F. Ebrahimi, Z. Ahmed, “ The effect of current density on properties of eletrodeposited nanocrystalline nickel”, J. Appl Elec., 33 (2003) 733.
35. K.W.Chen, Y.L. Wang, L. Chang, F.Y., Li, S.C. Chang, “ Investigation
of overpotential and seed thickness on damascene copper
eletroplating ”, J. Sur Coat Tech, 200 (2006) 3112.
36. C.H. Seah, S. Mridh, L. H. Chan, Growth morphology of eletroplated copper: Effect of seed material and current density// Proceeding of IEEE 1998 Interonnect Technology Conference. San Francisco. 1998.157-159.
37. T. Jiang, N. Hall, A. Ho, S. Morin, “ Quantitative analysis of electrodeposited tin film morphologies by atomic microscopy ”, J. Thin Solid Films, 471 (2005) 76
38. A.M. Rashidi, A. Amadeh, “ The effect of current density on the grain
size of electrodeposited nanocrystalline nickle coating ”, J. Sur Coat
Tech, 202 (2008) 3772.
39. D. Braha and A. Shmilovici, “ Data mining for improving a cleaning
process in semiconductor industry ”IEEE Trans. Semiconduct.
Manufact., 15 (2002) 91
40.J. Guzek, H. Azimi, and S. Suresh, “ Fatigue crack propagation along polymer-metal interfaces in microelectronic package ”, IEEE Trans. Comp., Packag., Manufact. Technol, 20 (1997) 496.
41. J.K. Shang, “ Interface fatigue-crack growth in layered materials ”, in Proc 6th Int. Fatigue Congr., Berlin, Germany, May 6-10, 1996, pp. 43-54.
42. S. Mall and W. S. Johnson, “ Debonding characteristics of adhesively bonded woven kevlar composites ”, ASTM, 1998, pp. 194-206.
43. A. T. Zehnder, and A.R. Ingraffea, “ Reinforcing effect of coverlayers on the fatigue life of copper-kapton flex cables ”, IEEE Trans. Comp., Packag., Manufact. Technol, 18 (1995) 704.
44. W. Engelmaier, and A. Wagner, “ Fatigue behavior and ductility determination for rolled annealed copper foil and flex circuits on Kapton ”, Circuit World, 14 (198) 30.
45. H.D. Conway, and W.E. Nickola, “ Antlclastic action of flat sheets in bending ”, J. Soc. Expt. Stress Anal, 5 (1965) 115.
46. L. R. F. Rose, “ Crack reinforcement by distributed springs ”, J. Mechan. Phys. Solids, 35 (1987) 383.
47. S. Wu, E. T. Kang, K. G. Neoh, C. Q. Cui, T. B. Lim, “ Adhesion and adhesion reliability enhancement of evaporated copper on surface modified poly(tetrafluoroethylene) film from graft copolymerization ”, IEEE Trans. Advanced Packag., 23 (2000) 538.
48. G. L. Khoo, B. Brox, R. Norrhede, and H. J. Maurer, “ Effect of copper lamination on the rheological and copper adhesin properties of a thermotropic liquid crystalline polymer used in PCB applications ”, IEEE Trans. Comp., Packag., Manufact. Technol, 20 (1997) 219.
49. K. Yata, Y. Enokido, and T. Yamaguchi, “ A method of adhesion strength test for thick film ”, IEEE Trans. Comp., Hybrids., Manufact. Technol, 16 (1993) 584.
50. A. Kestenbaum, J. F. Damico, B. J. Blumenstork and M. A. Deangelo, “ Laser drilling of microvias in epoxy-glass printed circuit boards ”, IEEE Trans. Comp., Hybrids., Manufact. Technol, 13 (1990) 1055.
51. M. A. Workman, A. Jeans, S. Braymen, R. E. Elder, R. A. Alejandro, and L. Zhao, “ Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays ”, Proc. of SPIE, 8323 (2012) 8323K1.
52. A. A. Stolov, B. E. Slyman, D. A. Simoff, A. S. Hokansson, R. S. Allen, and J. P. Earnhardt, “ Optical fibers with polyimide coating for medical application ”, Proc. of SPIE, 8215 (2012) 83230B1.
53. R. George, and L. J. Walsh, “ Performance assessment of novel side firing flexible optical fibers for dental application ”, Laser in Surgery and Medicine, 41 (2009) 214.
54. M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “ Strength measurement of optical fibers by bending ”, J. Amer. Ceram. Soc., 69 (1986) 815.
55. D. R. Biswas, “ Characterization of polyimide-coated optical fibers ”, Opt. Eng., 30 (1991) 772.
56. J. L. Armstrong , and M. J. Matthewson, “ Humidity dependence of the fatigue of high-strength fused silica optical fibers ”, J. Amer. Ceram. Soc., 83 (2000) 3100.
57. E. A. Lindholm, J. Li, A. Hokansson, B. Slyman, and D. Burgess, “ Aging behavior of optical fibers in aqueous environments ”, Proc. SPIE, 5465 (2004) 25.
58. Y. S. Shiue, and M. J. Matthewson, “ Mechanical reliability of silica optical fiber:a case study of biomedical application ”, Proc. SPIE, 3848 (1999) 115.
59. W. A. MacDonald, M. K. Looney, D. MacKerron, R. Eveson, R. Adam, K. Hashimoto, and K. Rakos, “ Latest advanced in substrates for flexible electronics ”, J. SID., 15 (2007) 1075.
60. W. A. MacDonald, M. K. Looney, D. MacKerron, R. Eveson, and K. Rakos, “ Designing and manufacturing substrates for flexible electronics ”, Plastics, Rubber and Composites, 37 (2008) 41.
61. A. Jeans, M. Workman, R. Cobene, R. Elder, G. Garcia, R. F. Pancorbo, W. Jackson, M. Jam, H. J. Kim, O. Kwon, H. Luo, J. Maltabes, P. Mei, C. Perlvo, M. Smith, and C. Taussig, “ Advances in roll-to-roll imprint lithography for display application ”, Proc. SPIE, 7637 (2010) 763719.
62. H. J. Kim, M. Workman, R. Cobene, R. Elder, G. Garcia, R. F. Pancorbo, W. Jackson, M. Jam, O. Kwon, H. Luo, J. Maltabes, P. Mei, C. Perlvo, M. Smith, and C. Taussig, “ Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography(SAIL) ”, J. Soc. Inf. Disp., 17 (2009) 963.
63. M. C. Cheon, Y. Kim, and C. S. Ha, “ Polymers for flexible displays: From materials selection to device application”, Prog. Polym. Sci., 33 (2008) 581.