簡易檢索 / 詳目顯示

研究生: 劉修源
論文名稱: 電磁晶體模擬計算分析與元件設計
指導教授: 柳克強
林諭男
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 117
中文關鍵詞: 能隙光子晶體電磁晶體濾波器能帶結構有限元素法平面波展開法高頻模擬器
外文關鍵詞: bandgap, photonic crystals, electromagnetism crystals, filter, FEM, finite element method, plane wave expansion, HFSS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電磁晶體是一種利用介電常數週期性變化來造成電磁能隙的物質,頻率落在能隙中的電磁波將無法穿越此晶體。本文主要是研究以有限元素法(Finite Element Method)求解正方晶格及三角晶格的電磁能帶結構,並瞭解其能隙特性。另外也分析有限高度的電磁晶體薄板系統(Electromagnetic Crystal Slabs)的能帶結構,因為這種平面式的週期性結構除了易與其它的微波元件整合於同一基板上,製作上也比較容易。本研究採用商用電磁模擬軟體-高頻模擬器(High Frequency Structure Simulator,HFSS)做為分析電磁晶體能隙的工具,並且建構相對應的透射模型求其散射參數的頻率響應,並將兩者所得的能隙範圍做一交叉驗證。
    在實驗上,我們設計一在Γ→X方向上,TM-like mode能隙位置在35.6-37.5 GHz之間的正方晶格電磁晶體薄板系統。透過完成一正方晶格電磁晶體薄板系統,並測量其散射參數的頻率響應,藉此驗證模擬計算的準確性,而模擬計算出的能隙位置與實際量測的結果36-38 GHz,兩者相當接近。同時也測量不同排數,4、8、11排的週期性空氣孔洞的散射參數,藉此觀察能隙的生成情形。
    此外,我們也探討當空氣孔洞排數一定的情況下,改變孔洞直徑,透過散射參數的頻率響應,觀察能隙的變化情形。結果我們發現,當孔洞直徑從原來的0.6 mm,縮小到0.5 mm時,能隙位置則由原來的36-38 GHz,移動到頻率較低的34-35.5 GHz;至於孔洞直徑縮小到0.4 mm後,觀察其散射參數的頻率響應,能隙已經變得不明顯。


    When electromagnetic waves penetrate a system that is composed of periodically modulated dielectric material in space, it behaves like electrons in a crystal. Such systems are called Electromagnetic Crystals when they are used for microwave regime. Contrast to electrons in a crystal, in electromagnetic crystals we can fabricate an electromagnetic bandgap in which no propagating modes will exist.
    The goal of this study is to solve band structures of square and triangular lattice by Finite Element Method(FEM). Another structure, electromagnetic crystal slabs, are also considered due to its easy fabrication and integration with other planar microwave passive devices on a substrate. Here we adopt commercial EM simulation software-High Frequency Structure Simulator(HFSS)as our tools. After solving band structure, we construct a driven model to calculate S parameter of finite periods and compare with each other.
    In experiment, we fabricate Electromagnetism Crystal Slabs with a square arranged air holes of different rows in Γ→X direction. By measuring S parameter using HP 8510C, we can see the formation of TM-like mode bandgap which occurs in 36-38 GHz. Comparison of the bandgap position between the measurement data, 36-38 GHz, and the simulation results, 35.6-37.5 GHz, shows that they agree with each other.
    Besides, another structure is also obtained by changing the diameter of the air holes. We can find that when the diameter of air holes decreases from 0.6 mm to 0.5 mm, the bandgap center frequency of TM-like mode will shift from 37 GHz to 34.5 GHz. When the diameter of air holes decreases below 0.4 mm, the TM-like mode bandgap becomes unobvious.

    第一章 序論 1 1.1 前言 1 1.2 文獻回顧 5 第二章 電磁晶體應用 12 2.1 三維電磁晶體 12 2.2 電磁晶體波導管 15 2.3 高指向性共振天線 17 第三章 原理 22 3.1 前言 22 3.2 電磁波在週期性介電材料內的傳播 24 3.3 Maxwell's equations的平面波展開 26 3.4 電磁波在二維週期性介電材料傳播 27 3.4.1 polarization 28 3.4.2 E-polarization 30 第四章 能帶結構計算 32 4.1 前言 32 4.2 模擬空間及最小布里淵區 32 4.3 週期性邊界條件 33 4.3.1 Bloch Theory 33 4.3.2 邊界條件 35 4.4 電磁晶體能隙估算方法及等效介電常數計算 37 4.5 電磁晶體色散關隙的計算流程 39 4.6 穿透率模擬 43 4.6.1 完美二維電磁晶體Γ→X方向上的入射模型 43 4.6.2 二維電磁晶體薄板系統Γ→X方向上的入射模型 46 第五章 初步模擬結果 53 5.1 二維正方晶格電磁晶體 53 5.2 二維三角晶格電磁晶體 59 5.3 正方晶格電磁晶體薄板系統 65 5.4 三角晶格電磁晶體薄板系統 73 第六章 實驗結果 82 6.1 能隙量測結果與討論 82 6.2 介電質板厚度及填充率對能隙位置的影響 92 第七章 結論 96 第八章 參考文獻 99 附錄A 電磁模擬軟體 102 附錄B 有限元素法 114

    1.E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics ”, Phys. Rev. Lett., Vol. 58, pp. 2059-2062 (1987).
    2.S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett., Vol. 58, pp. 2486-2489 (1987).
    3.J. D. Joannopoulous, R. D. Meade, and R. D. Winn. Photonic Crystals. Princeton Univ. Press, Princeton, 1995.
    4.O. J. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. Obrien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science, Vol. 284, pp. 1819-1821 (1999).
    5.E. Chow, S. Y. Lin, S. G. Johnson, P. R. Cilleneuve, J. D. Joannapoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three-dimensional control of light in two-dimensional photonic crystal slab”, Nature, Vol. 407, pp. 983-986 (2000).
    6.http://ab-initio.mit.edu/photons/tutorial/
    7.M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and Fabrication of Silicon Photonic Crystal Optical Waveguides”, J. Lightwave Tech. Vol. 18, pp. 1402-1411 (2000).
    8.E. Yablonovitch, T. J. Gmitter, and K. M. Leung, “Photonic Band Structure: The Face-Centered Cubic Case Employing Nonspherical Atoms”, Phys. Rev. Lett. Vol. 67, pp. 2259-2298 (1991).
    9.K. M. Ho, C. T. Chart, and C. M. Soukoulis, “Existence of a Photonic Gap in Period Dielectric Structure”, Phys. Rev. Lett. Vol. 65, pp. 3152-3155 (1990).
    10.M. Plihal, A. Shambrook, A. A. Maradudin, and P. Sheng, ”Two-dimensional photonic band structure”, Optics Communications Vol. 80, pp. 199-204 (1991).
    11.M. Plihal, and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The Triangular Lattice”, Phys. Rev. B Vol. 44, pp. 8565-8571 (1991).
    12.P. R. Villeneuve and M. Piche, ”Photonic band gap in two-dimensional square and hexagonal lattices”, Phys. Rev. B Vol. 46, pp. 4969-4972 (1992).
    13.J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurements of the photonic band gap in a two-dimensional photonic crystal slab”, J. Appl. Phys. Vol. 92, pp. 6918-6920 (2002).
    14.S. G. Johnson, J. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kodziejski, “Guided modes in photonic crystal slabs”, Phys. Rev. B Vol. 60, pp. 5751-5758 (1999).
    15.S. Foteinopoulous, A. Rosenberg, M. M. Sigalas, and C. M. Soukoulis, “In- and out-of-plane propagation of electromagnetic waves in low index contrast two dimensional photonic crystals”, J. Appl. Phys. Vol. 89, pp. 824-830 (2001).
    16.E. Ozbay, B. Temelkuran, and M. Bayindir, “Microwave applications of photonic crystals”, Progress in Electromagnetics Research, PIER 41, pp. 185-209 (2003).
    17.Charles Kittel. Introduction to Solid State Physics 7th ed. John Wiley and Sons, 1996.
    18.Chongjun Jin, Bingying Cheng, Baoyuan Man, and Daozhong Zhang, “Two-dimensional metallodielectric photonic crystal with a large band gap”, Appl. Phys. Lett. Vol. 75, pp. 1201-1203 (1999).
    19.G. H. Jonker and W. Kwestroo, “ Ternary System BaO-TiO2-SnO2 and BaO-TiO2-ZrO2 ”, ibid., Vol. 41, pp. 390-394 (1958)

    20.1 R. D. Purohit and A. K. Tyagi, “Synthesis of monophaasic Ba2Ti9O20 through gel combution ”, J. Mater. Chem. Vol. 12, pp. 1218-1221 (2002)
    21.R. Gonzalo, and G. Nagore, “Simulated and measured performance of a patch antenna on a two-dimensional photonic crystal substrate”, Progress in Electromagnetics Research, PIER 37, pp. 257-269 (2002).
    22.R. Gonzalo, P. D. Maagt, and M. Sorolla, “Enhenced patch-antenna performance by suppressing surface wave using photonic-bandgap substrate”, IEEE Microwave Theory and Technique, Vol. 47, No. 11, pp. 2131-2138 (1999).
    23.林宜儒,微型腔體共振器之設計與模擬,國立清華大學工程與系統科學研究所碩士論文(2003)
    24.Ansoft HFSS v9.2 輔助說明
    25.David K. Cheng. Field and Wave Electromagnetics 2nd ed. Wiley, 1989.
    26.David M. Pozar. Microwave Engineering 3th ed. Wiley, 2004.
    27.M. V. K. Chari and S. J. Salon. Numerical Methods In Electromagnetism. Academic Press, 2000.
    28.蔡雅芝,淺談光子晶體,物理雙月刊21卷4期,1999

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE