簡易檢索 / 詳目顯示

研究生: 孟瀅萱
Meng, Ying-Hsuan
論文名稱: 探究眼鏡蛇毒素對粒線體動態調控之影響
Clarifying the Effects of Cobra Cardiotoxins on Mitochondrial Dynamics
指導教授: 張壯榮
Chang, Chuang Rung
口試委員: 吳文桂
Wu, Wen-Guey
高淑慧
Kao, Shu-Huei
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 62
中文關鍵詞: 粒線體心臟毒素
外文關鍵詞: mitochondria, cardiotoxin
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 心臟毒素(CTX)是眼鏡蛇毒夜中主要成分,在組織表面心臟毒素會引發發炎反應。根據先前研究顯示,台灣西部與東部眼鏡蛇的細胞與肌肉毒性不盡相同,且來自西部的CTX A3會誘導粒線體分裂使型態變碎,但目前心臟毒素如何影響粒線體動態平衡尚未釐清。因此,本論文透過人類骨肉瘤細胞來研究心臟毒素對粒線體之間的關係。本實驗結果顯示加入來自東邊和西邊的心臟毒素 (CTX A3)及東邊的心臟毒素(CTX A6)使粒線體胞器網路形態分別呈現碎裂及網絡狀。進一步的實驗證明CTX A3誘導粒線體變碎必須依靠粒線體的分裂蛋白Drp1。此外,我們的研究指出相較於CTX A6,CTX A3會使粒線體功能變差。在本研究的實驗成果提供更多資訊了解心臟毒素對粒線體功能與動態平衡的影響,也有助於了解粒線體動態平衡機制以及台灣東部及西部眼鏡蛇心臟毒素的差異。


    Cardiotoxin (CTX) is the major component of cobra Naja atra snake venom that causes tissue inflammation. The interactions among CTXs and biological molecules on cellular membrane are suggested to be the main cause for CTXs toxicity. CTX A6 from east coast causes more severe tissue necrosis than CTX A3 from west coast of Taiwan according to the reported hospital cases. However, what mechanisms led CTX A3 and A6 to trigger such differences remain obscure. Previous studies had evidences that CTX may target to mitochondria. We hypothesize that regulation of mitochondrial dynamics balance is one of the signaling pathways that CTXs affect. The specific aim of this research is to clarify the effects of CTX A3 and A6 on mitochondrial dynamics and activities. Our results indicated that when cells encountered CTX A3 and CTX A6, mitochondrial network turned into fragmentation and hyperfused respectively. In addition, mitochondrial fragmentation induced by CTX A3 was fission protein Drp1-dependent. Furthermore, our results found mitochondrial membrane potential and reserve respiration capacity decreased after cells were treated with CTX A3 but not CTX A6. These data suggested that the toxicity of CTXs would disrupt mitochondrial dynamic balance. The results also provide us the functional differences of cardiotoxins from eastern and western coast of Taiwan.

    致謝.............................................................I 中文摘要................................................ III ABSTRACT....................................................... IV CONTENTS................................................... V LIST OF FIGURES....................................... VII Chapter 1 Introduction................................................ 1 1.1 Mitochondria are double-membrane organelles within the eukaryotic cells............................................... 1 1.2 Cellular energy production depends on mitochondrial oxidative phosphorylation................................................ 1 1.3 Mitochondrial dynamics regulate the mitochondrial quality ................................................................2 1.4 Important factors involved in mitochondrial dynamics... 3 1.4.1 Mitochondrial dynamics - fusion........................ 4 1.4.2 Mitochondrial dynamics – fission....................... 5 1.5 The actin filaments serve in mitochondrial fission..... 6 1.6 Dysregulation of mitochondrial dynamics leads to neurodegenerative diseases......................................6 1.7 Mitochondria are required for apoptosis and necrosis... 7 1.8 Cardiotoxin............................................ 8 1.9 Specific aim........................................... 9 Chapter 2 Material and Method............................ 10 2.1 Cell culture........................................... 10 2.2 Plasmid transfection................................... 10 2.3 Immunofluorescence staining............................ 11 2.4 Mdivi-1 treatment...................................... 11 2.5 Cell viability assay................................... 12 2.6 Protein extraction............................. .12 2.7 SDS-PAGE and western blot.............................. 12 2.8 Antibodies............................................. 13 2.9 Measurement of mitochondrial membrane potential........ 14 2.10 Measurement of mitochondrial and cytosol reactive oxygen species........................................................ 14 2.11 Measurement of mitochondrial oxygen consumption rate... 15 2.12 Statistical analysis................................... 15 Chapter 3 Results........................................ 16 3.1 Cardiotoxins affects mitochondrial dynamics in U-2OS cell ................................................................16 3.2 The effects of cardiotoxin A3 treatment can be attenuated by Drp1 inhibitor Mdivi-1...................................... 17 3.3 Cardiotoxin A3 treatment can be attenuated by Drp1 siRNA ................................................................17 3.4 Mitochondrial related proteins were not affected by CTX A3 and CTX A6..................................................... 18 3.5 CTX A3 affects mitochondrial membrane potential but not CTX A6......................................................... 18 3.6 Cellular superoxide and mitochondrial superoxide levels were not altered by CTX A3 and A6.............................. 19 3.7 Mitochondrial reserved respiration capacity decreased after treating with CTX A3 but not A6.......................... 19 3.8 Mdivi-1 has minor effects on cell viability of CTX A3 treated U-2OS cells............................................ 21 3.9 Rhodamine-labeled CTX A3 did not target to mitochondrial membrane as expected............................................21 Chapter 4 Conclusion and discussion...................... 22 4.1 Cardiotoxins affect mitochondrial dynamics in U-2OS cells ................................................................22 4.2 Cardiotoxins have no effects on mitochondrial dynamics related proteins............................................... 22 4.3 Mitochondrial activity was altered after CTX A3 but not CTX A6 treatment............................................... 23 4.4 Cardiotoxin A3 did not target to mitochondria as expected ................................................................24 Chapter 5 Perspective.................................... 25 REFERENCE...................................................... 26 LIST OF FIGURES Figure 1. Mitochondria are highly dynamic organelles in mammalian cells.......................................................... 34 Figure 2. Mitochondrial fission and fusion machinery in mammalian cells.......................................................... 35 Figure 3. Sequences and 3D structures of CTX A3 and A6......... 37 Figure 4. To clarify the effects of CTX A3 and A6 on mitochondrial dynamic........................................................ 38 Figure 5. Cardiotoxins have effects on mitochondrial dynamics in U-2OS cell..................................................... 40 Figure 6. CTX A3 treatment can be partially blocked by Drp1 inhibitor Mdivi-1.............................................. 42 Figure 7. CTX A3 treatment can be partially rescued by Drp1 siRNA ................................................................44 Figure 8. Mitochondrial related proteins were not altered by CTX ................................................................46 Figure 9. Mitochondrial membrane potential was decreased under CTX A3 treatment................................................... 48 Figure 10. Cellular superoxide and mitochondrial superoxide levels were not affected by CTX A3 and A6............................. 51 Figure 11. Mitochondrial respiration after CTX A3 and A6 treatments..................................................... 56 Figure 12. Reserve capacity and proton leak after CTXs treatments ................................................................58 Figure 13. The effects of CTX A3 and Mdivi-1 on cell viability. 60 Figure 14. CTX A3 did not target to mitochondrial membrane..... 62  

    REFERENCE
    Amiott, E.A., Cohen, M.M., Saint-Georges, Y., Weissman, A.M., and Shaw, J.M. (2009). A mutation associated with CMT2A neuropathy causes defects in Fzo1 GTP hydrolysis, ubiquitylation, and protein turnover. Mol Biol Cell 20, 5026-5035.
    Belenguer, P., and Pellegrini, L. (2013). The dynamin GTPase OPA1: more than mitochondria? Biochim Biophys Acta 1833, 176-183.
    Bordt, E.A., Clerc, P., Roelofs, B.A., Saladino, A.J., Tretter, L., Adam-Vizi, V., Cherok, E., Khalil, A., Yadava, N., Ge, S.X., et al. (2017). The Putative Drp1 Inhibitor mdivi-1 Is a Reversible Mitochondrial Complex I Inhibitor that Modulates Reactive Oxygen Species. Dev Cell 40, 583-594 e586.
    Brand, M.D., and Nicholls, D.G. (2011). Assessing mitochondrial dysfunction in cells. Biochem J 435, 297-312.
    Bray, N. (2018). Fission' for LTP. Nat Rev Neurosci 19, 712-713.
    Busch, K.B., Kowald, A., and Spelbrink, J.N. (2014). Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci 369, 20130442.
    Chang, C.R., and Blackstone, C. (2010). Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci 1201, 34-39.
    Chen, H., Vermulst, M., Wang, Y.E., Chomyn, A., Prolla, T.A., McCaffery, J.M., and Chan, D.C. (2010). Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141, 280-289.
    Chen, K.C., Chiou, Y.L., Kao, P.H., Lin, S.R., and Chang, L.S. (2008). Taiwan cobra cardiotoxins induce apoptotic death of human neuroblastoma SK-N-SH cells mediated by reactive oxygen species generation and mitochondrial depolarization. Toxicon 51, 624-634.
    Chow, J.P., Poon, R.Y., and Ma, H.T. (2011). Inhibitory phosphorylation of cyclin-dependent kinase 1 as a compensatory mechanism for mitosis exit. Mol Cell Biol 31, 1478-1491.
    Criollo, A., Galluzzi, L., Maiuri, M.C., Tasdemir, E., Lavandero, S., and Kroemer, G. (2007). Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12, 3-18.
    Crowley, L.C., Christensen, M.E., and Waterhouse, N.J. (2016). Measuring Mitochondrial Transmembrane Potential by TMRE Staining. Cold Spring Harb Protoc 2016.
    Dikalov, S.I., and Harrison, D.G. (2014). Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 20, 372-382.
    Elmore, S. (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35, 495-516.
    Endo, T., and Yamano, K. (2010). Transport of proteins across or into the mitochondrial outer membrane. Biochim Biophys Acta 1803, 706-714.
    Falahzadeh, K., Banaei-Esfahani, A., and Shahhoseini, M. (2015). The potential roles of actin in the nucleus. Cell J 17, 7-14.
    Festjens, N., Vanden Berghe, T., and Vandenabeele, P. (2006). Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757, 1371-1387.
    Gomes, L.C., and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 1833, 205-212.
    Griffin, E.E., Detmer, S.A., and Chan, D.C. (2006). Molecular mechanism of mitochondrial membrane fusion. Biochim Biophys Acta 1763, 482-489.
    Guo, R., Gu, J., Zong, S., Wu, M., and Yang, M. (2018). Structure and mechanism of mitochondrial electron transport chain. Biomed J 41, 9-20.
    Hatch, A.L., Gurel, P.S., and Higgs, H.N. (2014). Novel roles for actin in mitochondrial fission. J Cell Sci 127, 4549-4560.
    Haun, F., Nakamura, T., and Lipton, S.A. (2013). Dysfunctional Mitochondrial Dynamics in the Pathophysiology of Neurodegenerative Diseases. J Cell Death 6, 27-35.
    Hroudova, J., and Fisar, Z. (2013). Control mechanisms in mitochondrial oxidative phosphorylation. Neural Regen Res 8, 363-375.
    Hu, C., Huang, Y., and Li, L. (2017). Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals. Int J Mol Sci 18.
    Jahani-Asl, A., and Slack, R.S. (2007). The phosphorylation state of Drp1 determines cell fate. EMBO Rep 8, 912-913.
    Jha, S.K., Jha, N.K., Kumar, D., Ambasta, R.K., and Kumar, P. (2017). Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 1863, 1132-1146.
    Kalainayakan, S.P., FitzGerald, K.E., Konduri, P.C., Vidal, C., and Zhang, L. (2018). Essential roles of mitochondrial and heme function in lung cancer bioenergetics and tumorigenesis. Cell Biosci 8, 56.
    Kim, M.J., Choi, O.K., Chae, K.S., Kim, M.K., Kim, J.H., Komatsu, M., Tanaka, K., Lee, H., Chung, S.S., Kwak, S.H., et al. (2015). Mitochondrial Complexes I and II Are More Susceptible to Autophagy Deficiency in Mouse beta-Cells. Endocrinol Metab (Seoul) 30, 65-70.
    Koike, M., Nojiri, H., Ozawa, Y., Watanabe, K., Muramatsu, Y., Kaneko, H., Morikawa, D., Kobayashi, K., Saita, Y., Sasho, T., et al. (2015). Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 5, 11722.
    Korobova, F., Gauvin, T.J., and Higgs, H.N. (2014). A role for myosin II in mammalian mitochondrial fission. Curr Biol 24, 409-414.
    Kuhlbrandt, W. (2015). Structure and function of mitochondrial membrane protein complexes. BMC Biol 13, 89.
    Loson, O.C., Song, Z., Chen, H., and Chan, D.C. (2013). Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24, 659-667.
    Ma, J., Zhai, Y., Chen, M., Zhang, K., Chen, Q., Pang, X., and Sun, F. (2019). New interfaces on MiD51 for Drp1 recruitment and regulation. PLoS One 14, e0211459.
    Marsboom, G., Toth, P.T., Ryan, J.J., Hong, Z., Wu, X., Fang, Y.H., Thenappan, T., Piao, L., Zhang, H.J., Pogoriler, J., et al. (2012). Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res 110, 1484-1497.
    Martin, L.J. (2012). Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107, 355-415.
    Mishra, P., and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15, 634-646.
    Mukherjee, R., and Chakrabarti, O. (2016). Regulation of Mitofusin1 by Mahogunin Ring Finger-1 and the proteasome modulates mitochondrial fusion. Biochim Biophys Acta 1863, 3065-3083.
    Otera, H., Ishihara, N., and Mihara, K. (2013). New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta 1833, 1256-1268.
    Pagliuso, A., Cossart, P., and Stavru, F. (2018). The ever-growing complexity of the mitochondrial fission machinery. Cell Mol Life Sci 75, 355-374.
    Parone, P.A., Da Cruz, S., Tondera, D., Mattenberger, Y., James, D.I., Maechler, P., Barja, F., and Martinou, J.C. (2008). Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One 3, e3257.
    Patten, D.A., Wong, J., Khacho, M., Soubannier, V., Mailloux, R.J., Pilon-Larose, K., MacLaurin, J.G., Park, D.S., McBride, H.M., Trinkle-Mulcahy, L., et al. (2014). OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J 33, 2676-2691.
    Perry, S.W., Norman, J.P., Barbieri, J., Brown, E.B., and Gelbard, H.A. (2011). Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50, 98-115.
    Pesch, U.E., Fries, J.E., Bette, S., Kalbacher, H., Wissinger, B., Alexander, C., and Kohler, K. (2004). OPA1, the disease gene for autosomal dominant optic atrophy, is specifically expressed in ganglion cells and intrinsic neurons of the retina. Invest Ophthalmol Vis Sci 45, 4217-4225.
    Pickrell, A.M., and Youle, R.J. (2015). The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron 85, 257-273.
    Rao, V.K., Carlson, E.A., and Yan, S.S. (2014). Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta 1842, 1267-1272.
    Roelofs, B.A., Ge, S.X., Studlack, P.E., and Polster, B.M. (2015). Low micromolar concentrations of the superoxide probe MitoSOX uncouple neural mitochondria and inhibit complex IV. Free Radic Biol Med 86, 250-258.
    Rollason, R., Wherlock, M., Heath, J.A., Heesom, K.J., Saleem, M.A., and Welsh, G.I. (2016). Disease causing mutations in inverted formin 2 regulate its binding to G-actin, F-actin capping protein (CapZ alpha-1) and profilin 2. Biosci Rep 36, e00302.
    Song, Z., Chen, H., Fiket, M., Alexander, C., and Chan, D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178, 749-755.
    Srinivasan, S., Guha, M., Kashina, A., and Avadhani, N.G. (2017). Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. Biochim Biophys Acta Bioenerg 1858, 602-614.
    Su, B., Wang, X., Zheng, L., Perry, G., Smith, M.A., and Zhu, X. (2010). Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802, 135-142.
    Suarez-Rivero, J.M., Villanueva-Paz, M., de la Cruz-Ojeda, P., de la Mata, M., Cotan, D., Oropesa-Avila, M., de Lavera, I., Alvarez-Cordoba, M., Luzon-Hidalgo, R., and Sanchez-Alcazar, J.A. (2016). Mitochondrial Dynamics in Mitochondrial Diseases. Diseases 5.
    Tait, S.W., and Green, D.R. (2013). Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 5.
    Traba, J., Miozzo, P., Akkaya, B., Pierce, S.K., and Akkaya, M. (2016). An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes. J Vis Exp.
    van der Bliek, A.M., Shen, Q., and Kawajiri, S. (2013). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 5.
    Wang, C.H., and Wu, W.G. (2005). Amphiphilic beta-sheet cobra cardiotoxin targets mitochondria and disrupts its network. FEBS Lett 579, 3169-3174.
    Westermann, B. (2012). Bioenergetic role of mitochondrial fusion and fission. Biochim Biophys Acta 1817, 1833-1838.
    Wikstrom, J.D., Sereda, S.B., Stiles, L., Elorza, A., Allister, E.M., Neilson, A., Ferrick, D.A., Wheeler, M.B., and Shirihai, O.S. (2012). A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 7, e33023.
    Xiong, S., Mu, T., Wang, G., and Jiang, X. (2014). Mitochondria-mediated apoptosis in mammals. Protein Cell 5, 737-749.
    Xu, F., Armstrong, R., Urrego, D., Qazzaz, M., Pehar, M., Armstrong, J.N., Shutt, T., and Syed, N. (2016). The mitochondrial division inhibitor Mdivi-1 rescues mammalian neurons from anesthetic-induced cytotoxicity. Mol Brain 9, 35.
    Zorzano, A., and Claret, M. (2015). Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci 7, 101.

    QR CODE