簡易檢索 / 詳目顯示

研究生: 張雅蓁
Chang, Ya-Chen
論文名稱: 階層式二氧化鈦空心球光散射現象之研究: 光催化反應與染料敏化太陽能電池的應用
Scattering Enhancement of Hierarchical TiO2 Hollow Spheres : Photocatalysis and Dye-sensitized Solar Cell
指導教授: 李紫原
口試委員: 李紫原
裘性天
徐文光
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 二氧化鈦散射空心球光催化染料敏化太陽能電池
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們成功的在室溫下合成二氧化鈦實心球,再經過適當前處理與一步驟的水熱方法,即可得到高均勻度、高分散性、可調控大小,直徑由200 nm至900 nm的階層式二氧化鈦微米空心球。由於此階層式的微米空心球結構不僅提高表面積、有活性表面,更有良好的光散射效果,我們將其應用在光催化反應降解亞甲基藍溶液和作為染料敏化太陽能電池的工作電極,討論不同的粒徑大小對光散射影響,以及對整體效能的提升。在兩種應用中,有空心球結構的樣品皆比磨碎後的樣品有更好的表現,歸功於階層式空心球狀結構能提高表面積及好的光散射能力;除此之外,適當的直徑大小符合米氏散射理論,有效的散射光以提高入射光的使用效益產生光電子。由結果看來,階層式二氧化鈦微米空心球是一個在應用上具發展潛力的材料。


    目錄 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧 4 2.1 二氧化鈦基本性質 4 2.2 Hierarchical TiO2 microspheres 7 2.2.1 Hierarchical TiO2 microspheres 簡介 7 2.2.2 Hierarchical TiO2 microspheres 結構優點與應用 9 2.3 Scattering effect 12 2.3.1 散射性質簡介 12 2.3.2 mie scattering effect 13 2.4 光催化反應 15 2.4.1 光催化反應基本原理與機制 15 2.5 染料敏化太陽能電池(DSSC) 18 2.5.1 染料敏化太陽能電池基本原理與機制 18 2.5.2 染料敏化太陽能電池之效率 20 第三章 實驗方法 22 3.1 實驗材料與流程 22 3.2 實驗分析設備 24 3.3 Hierarchical TiO2 hollow spheres之合成 26 3.4 Hierarchical TiO2 hollow spheres應用於光催化研究 27 3.4.1 光催化測試之方法 27 3.4.2 光催化測試結果之量測 28 3.5 Hierarchical TiO2 hollow spheres應用於染料敏化太陽能電池之研究 29 3.5.1 染料敏化太陽能電池之製作 29 3.5.2 光催化測試結果之量測 32 第四章 結果與討論 34 4.1 Hierarchical TiO2 hollow spheres形貌與性質之鑑定 34 4.2 Hierarchical TiO2 hollow spheres應用於光催化研究 37 4.2.1 Hierarchical TiO2 hollow spheres光散射影響研究於光催化反應 37 4.2.2 光催化能力比較:磨碎樣品及市售TiO2 (P25) 40 4.2.3 光催化能力比較:理論模擬計算模型 44 4.3 Hierarchical TiO2 hollow spheres應用於染料敏化太陽能電池 48 4.3.1 Hierarchical TiO2 hollow spheres光散射影響研究於DSSC 48 4.3.2 影響Hierarchical TiO2 hollow spheres吸附染料因素 55 4.3.3 光電轉換效率比較:實心球、空心球、多孔性及市售(P25) 60 第五章 結論與未來展望 63 5.1 結論 63 5.2 未來展望 64 第六章 參考文獻 65   表目錄 表3-1 實驗參藥品 22 表3-2 塗佈電極之漿料配方 31 表4-1 實心球前處理與水熱條件 36 表4-2 各大小空心球對一級反應迴歸所得到的k及R2值 39 表4-3 比較365 nm、470 nm空心球與P25的一級反應迴歸所得到的k及R2值 41 表4-4 不同大小空心球之平均效率與染料吸附量 51 表4-5 不同大小空心球最接近平均的電池結果 52 表4-6 220 nm、440 nm、620nm、800 nm四種大小空心球Grain size、比表面 積、孔徑分布之統整比較表 59 表4-7 四種二氧化鈦材料光電轉換效率與染料吸附量整理 62   圖目錄 圖2-1 二氧化鈦晶型結構 (A) anatase (B) rutile 6 圖2-2 八面體間的鍵結方式 (A) anatase (B) rutile 6 圖2-3 Hierarchical TiO2 microsphere 示意圖 8 圖2-4 選擇適當大小的球體可增加散射次數提升光能利用示意圖 10 圖2-5 空心結構或是雙層結構的HMSs多重反射示意圖 10 圖2-6 Hierarchical microsphere 兩種孔徑之電解液擴散示意圖 11 圖2-7 球狀anatase TiO2在折射率2.5的空氣中散射行為之米氏散射理論模擬 14 圖2-8 光催化反應機制圖 16 圖2-9 染料敏化太陽能電池機制圖 19 圖2-10 典型的染料敏化太陽能電池I-V圖譜 21 圖3-1 實驗流程圖 23 圖3-2 (a)亞甲基藍分子式 (b)光催化反應實驗架設圖 27 圖3-3 DSSC之製作流程 (a)工作電極製作 (b)電池組裝過程 31 圖3-4 在照光工作條件下,DSSC 之典型 Nyquist plot 33 圖3-5 EIS數據分析所使用的等效電路圖 33 圖4-1 不同大小的實心球與空心球 (a-n,上下兩個一組,反應前後);若不採用適當前處理和水熱條件所得的破碎塌陷空心球 (o-p) 35 圖4-2 TiO2 實心球與空心球的XRD圖譜 36 圖4-3 Hierarchical TiO2 hollow spheres的TEM影像 36 圖4-4 光催化反應所選用的六種大小空心球 38 圖4-5 六種大小空心球之光催化反應降解結果 38 圖4-6 六種大小空心球一級光催化反應校正曲線 39 圖4-7 磨碎的空心球SEM圖 (a) 低倍率 (b) 高倍率 41 圖4-8 各大小的空心球與其磨碎樣品的光催化反應速率常數k值比較圖 41 圖4-9 空心球與其磨碎樣品的BJH孔徑分布圖 42 圖4-10 空心球與其磨碎樣品的BET比表面積圖 42 圖4-11 P25與Hierarchical TiO2 hollow spheres 光催化降解結果比較 43 圖4-12 延伸的米氏散射理論之空心球模型 46 圖4-13 單顆空心球的Absorption power與空心球的粒徑大小( x, size parameter )和殼層厚度( ξ,thickness parameter )關係之模擬圖. 46 圖4-14 球殼厚度與散射能力的關係(a)及(b)的實線為空心球球殼厚( ξ=0.7 ),(c)及(d)為空心球球殼薄( ξ=0.1 ) 47 圖4-15 理論計算與實際實驗結果比較圖 47 圖4-16 染料敏化太陽能電池所使用的不同大小空心球與磨碎對照組 50 圖4-17 不同大小空心球之轉換效率I-V圖 50 圖4-18 不同大小空心球之平均效率對照圖 51 圖4-19 不同大小空心球之IPCE圖 52 圖4-20 不同大小空心球之Normalized IPCE圖 53 圖4-21 不同大小空心球之反射圖譜 53 圖4-22 不同大小空心球之EIS圖 54 圖4-23 Hierarchical TiO2 hollow spheres直徑大小、光電轉換效率及TiO2工作 電極電子傳輸阻抗之關係 54 圖4-24 Hierarchical TiO2 hollow spheres直徑大小、光電轉換效率及染料吸附量 之關係 56 圖4-25 觀察表面差異,由小而大(左而右)的空心球之SEM及TEM圖 57 圖4-26 220 nm、440 nm、620nm、800 nm四種大小的空心球XRD圖 58 圖4-27 220 nm、440 nm、620nm、800 nm四種大小的空心球BET比表面積圖 58 圖4-28 220 nm、440 nm、620nm、800 nm四種大小的空心球BJH孔徑分布圖 59 圖4-29直徑約為420 nm的 (a)實心球 (b)空心球 (c)多孔性球 61 圖4-30四種二氧化鈦材料比較之I-V圖結果 61 圖4-31為四種二氧化鈦材料比較之normalized IPCE圖結果 62

    1. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
    2. (a) Kumar, S. G.; Devi, L. G., Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A 2011, 115 (46), 13211-13241; (b) Yang, M.-H.; Tsai, M.-C.; Chang, Y.-W.; Chang, Y.-C.; Chiu, H.-T.; Lee, C.-Y., Photodegradation by a Heterogeneous Mixture of Micro-Sized Anatase and Truncated Rhomboid Anatase Hollow Spheres. ChemCatChem 2013, n/a-n/a; (c) Wu, X.; Yin, S.; Dong, Q.; Guo, C.; Kimura, T.; Matsushita, J.-i.; Sato, T., Photocatalytic Properties of Nd and C Codoped TiO2 with the Whole Range of Visible Light Absorption. The Journal of Physical Chemistry C 2013, 117 (16), 8345-8352.
    3. (a) Crawford, S.; Thimsen, E.; Biswas, P., Impact of Different Electrolytes on Photocatalytic Water Splitting. J Electrochem Soc 2009, 156 (5), H346-H351; (b) Kudo, A., Photocatalyst materials for water splitting. Catal Surv Asia 2003, 7 (1), 31-38.
    4. (a) Chen, D.; Huang, F.; Cheng, Y.-B.; Caruso, R. A., Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Advanced Materials 2009, 21 (21), 2206-2210; (b) Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N.-G.; Kim, K.; Lee, W. I., Formation of Highly Efficient Dye-Sensitized Solar Cells by Hierarchical Pore Generation with Nanoporous TiO2 Spheres. Advanced Materials 2009, 21 (36), 3668-3673; (c) Park, K.; Zhang, Q.; Garcia, B. B.; Zhou, X.; Jeong, Y. H.; Cao, G., Effect of an ultrathin TiO2 layer coated on submicrometer-sized ZnO nanocrystallite aggregates by atomic layer deposition on the performance of dye-sensitized solar cells. Adv Mater 2010, 22 (21), 2329-2332.
    5. (a) Kang, T. S.; Smith, A. P.; Taylor, B. E.; Durstock, M. F., Fabrication of Highly-Ordered TiO2 Nanotube Arrays and Their Use in Dye-Sensitized Solar Cells. Nano Lett 2009, 9 (2), 601-606; (b) Park, J. H.; Kim, S.; Bard, A. J., Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 2006, 6 (1), 24-28; (c) Ortiz, G. F.; Hanzu, I.; Djenizian, T.; Lavela, P.; Tirado, J. L.; Knauth, P., Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chem Mater 2009, 21 (1), 63-67.
    6. Zhang, Q.; Chou, T. P.; Russo, B.; Jenekhe, S. A.; Cao, G., Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angew Chem Int Ed Engl 2008, 47 (13), 2402-2406.
    7. (a) Cheng, Q.-Q.; Cao, Y.; Yang, L.; Zhang, P.-P.; Wang, K.; Wang, H.-J., Synthesis and photocatalytic activity of titania microspheres with hierarchical structures. Materials Research Bulletin 2011, 46 (3), 372-377; (b) Rahal, R.; Wankhade, A.; Cha, D.; Fihri, A.; Ould-Chikh, S.; Patil, U.; Polshettiwar, V., Synthesis of hierarchical anatase TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Rsc Adv 2012, 2 (18), 7048-7052; (c) Liu, B.; Nakata, K.; Sakai, M.; Saito, H.; Ochiai, T.; Murakami, T.; Takagi, K.; Fujishima, A., Hierarchical TiO2 spherical nanostructures with tunable pore size, pore volume, and specific surface area: facile preparation and high-photocatalytic performance. Catalysis Science & Technology 2012, 2 (9), 1933-1939.
    8. (a) Liu, Z.-H.; Su, X.-J.; Hou, G.-L.; Bi, S.; Xiao, Z.; Jia, H.-P., Enhanced performance for dye-sensitized solar cells based on spherical TiO2 nanorod-aggregate light-scattering layer. Journal of Power Sources 2012, 218, 280-285; (b) Liao, J.-Y.; Lei, B.-X.; Kuang, D.-B.; Su, C.-Y., Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science 2011, 4 (10), 4079-4085; (c) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G., Nano-embossed Hollow Spherical TiO2 as Bifunctional Material for High-Efficiency Dye-Sensitized Solar Cells. Advanced Materials 2008, 20 (1), 195-199.
    9. (a) Yu, I. G.; Kim, Y. J.; Kim, H. J.; Lee, C.; Lee, W. I., Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry 2011, 21 (2), 532-538; (b) Xu, H.; Chen, X.; Ouyang, S.; Kako, T.; Ye, J., Size-Dependent Mie’s Scattering Effect on TiO2 Spheres for the Superior Photoactivity of H2 Evolution. The Journal of Physical Chemistry C 2012, 116 (5), 3833-3839.
    10. Tsai, M. C.; Tsai, T. L.; Lin, C. T.; Chung, R. J.; Sheu, H. S.; Chiu, H. T.; Lee, C. Y., Tailor made Mie scattering color filters made by size-tunable titanium dioxide particles. J Phys Chem C 2008, 112 (7), 2697-2702.
    11. Banerjee, A., The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnology, Science and Applications 2011, 35-65.
    12. (a) Hoffmann, M. R.; Martin, S. T.; Choi, W. Y.; Bahnemann, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem Rev 1995, 95 (1), 69-96; (b) Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; Sclafani, A.; Schiavello, M.; Fox, M. A., Photocatalytic Reduction of CO2 with H2O on TiO2 and Cu/TiO2 Catalysts. Res Chem Intermediat 1994, 20 (8), 815-823.
    13. Adachi, M.; Murata, Y.; Takao, J.; Jiu, J. T.; Sakamoto, M.; Wang, F. M., Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. J Am Chem Soc 2004, 126 (45), 14943-14949.
    14. Pan, J. H.; Dou, H.; Xiong, Z.; Xu, C.; Ma, J.; Zhao, X. S., Porous photocatalysts for advanced water purifications. Journal of Materials Chemistry 2010, 20 (22), 4512-4528.
    15. Zhu, F.; Wu, D.; Li, Q.; Dong, H.; Li, J.; Jiang, K.; Xu, D., Hierarchical TiO2 microspheres: synthesis, structural control and their applications in dye-sensitized solar cells. Rsc Adv 2012, 2 (31), 11629-11637.
    16. (a) Han, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S., Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J Am Chem Soc 2009, 131 (9), 3152-3153; (b) Liu, G.; Yang, H. G.; Wang, X. W.; Cheng, L. N.; Pan, J.; Lu, G. Q.; Cheng, H. M., Visible Light Responsive Nitrogen Doped Anatase TiO2 Sheets with Dominant {001} Facets Derived from TiN. J Am Chem Soc 2009, 131 (36), 12868-12869; (c) Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q., Solvothermal Synthesis and Photoreactivity of Anatase TiO2 Nanosheets with Dominant {001} Facets. J Am Chem Soc 2009, 131 (11), 4078-4083.
    17. (a) Sun, C. H.; Yang, X. H.; Chen, J. S.; Li, Z.; Lou, X. W.; Li, C. Z.; Smith, S. C.; Lu, G. Q.; Yang, H. G., Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance. Chem Commun 2010, 46 (33), 6129-6131; (b) Chen, J. S.; Tan, Y. L.; Li, C. M.; Cheah, Y. L.; Luan, D. Y.; Madhavi, S.; Boey, F. Y. C.; Archer, L. A.; Lou, X. W., Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. J Am Chem Soc 2010, 132 (17), 6124-6130.
    18. (a) Wu, X.; Chen, Z.; Lu, G. Q. M.; Wang, L., Nanosized Anatase TiO2 Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dye-Sensitized Solar Cells. Advanced Functional Materials 2011, 21 (21), 4167-4172; (b) Yu, J. G.; Fan, J. J.; Lv, K. L., Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2 (10), 2144-2149.
    19. Wu, D.; Zhu, F.; Li, J.; Dong, H.; Li, Q.; Jiang, K.; Xu, D., Monodisperse TiO2 hierarchical hollow spheres assembled by nanospindles for dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (23), 11665.
    20. Gao, Z.; Wu, Z.; Li, X.; Chang, J.; Wu, D.; Ma, P.; Xu, F.; Gao, S.; Jiang, K., Application of hierarchical TiO2 spheres as scattering layer for enhanced photovoltaic performance in dye sensitized solar cell. CrystEngComm 2013, 15 (17), 3351-3358.
    21. (a) Wu, X.; Lu, G. Q.; Wang, L., Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy & Environmental Science 2011, 4 (9), 3565-3572; (b) Qian, J.; Liu, P.; Xiao, Y.; Jiang, Y.; Cao, Y.; Ai, X.; Yang, H., TiO2-Coated Multilayered SnO2 Hollow Microspheres for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21 (36), 3663-3667.
    22. Kam, Z., Absorption and Scattering of Light by Small Particles - Bohren,C, Huffman,Dr. Nature 1983, 306 (5943), 625-625.
    23. (a) Bashkatova, T. A.; Bashkatov, A. N.; Kochubey, V. I.; Tuchin, V. V., Light scattering properties for spherical and cylindrical particles: a simple approximation derived from Mie calculations. Saratov Fall Meeting 2000: Optical Technologies in Biophysics and Medicine Ii 2001, 4241, 247-259; (b) Skelton, S. E.; Sergides, M.; Memoli, G.; Marago, O. M.; Jones, P. H., Optical squeezing of microbubbles: Ray optics and Mie scattering calculations. Optical Trapping and Optical Micromanipulation Ix 2012, 8458.
    24. Kai, L.; Dalessio, A., Extinction Efficiency of Gradient-Index Microspheres. Part Part Syst Char 1995, 12 (3), 119-122.
    25. (a) Gratzel, M., Dye-sensitized solar cells. J Photoch Photobio C 2003, 4 (2), 145-153; (b) Kalaignan, G. P.; Kang, Y. S., A review on mass transport in dye-sensitized nanocrystalline solar cells. J Photoch Photobio C 2006, 7 (1), 17-22.
    26. (a) Thavasi, V.; Renugopalakrishnan, V.; Jose, R.; Ramakrishna, S., Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mat Sci Eng R 2009, 63 (3), 81-99; (b) Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; Gratzel, M.; Frank, A. J., Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 1997, 101 (14), 2576-2582.
    27. Liu, S.; Han, G.; Shu, M.; Han, L.; Che, S., Monodispersed inorganic/organic hybrid spherical colloids: Versatile synthesis and their gas-triggered reversibly switchable wettability. Journal of Materials Chemistry 2010, 20 (44), 10001.
    28. (a) Yamabi, S.; Imai, H., Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chem Mater 2002, 14 (2), 609-614; (b) Yu, J. C.; Yu, J. G.; Ho, W. K.; Jiang, Z. T.; Zhang, L. Z., Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 2002, 14 (9), 3808-3816.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE