研究生: |
李清楠 CHING-NAN LEE |
---|---|
論文名稱: |
下電極材料對原子層化學氣相沉積氧化鋁高介電薄膜應用在奈米尺度世代DRAM影響之研究 |
指導教授: | 吳泰伯 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 氧化鋁 、原子層化學氣相沉積 、記憶體 、高介電常數材料 、奈米 、製程 |
外文關鍵詞: | ALCVD, ALD, Al2O3, DRAM, Memory |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
ITRS(International Technology Roadmap For Semiconductor)2003及2004指出當DRAM進入Mega-bit的集積度後,可利用Si3N4/SiO2(ONO)做為介電薄膜材料,再加上三度空間電容形狀的設計(Trench或Stack結構),可讓DRAM中每個Cell都能維持足夠的電容值以避免雜訊對0、1訊號的誤判。但當線寬尺度進入0.13微米以下,利用ONO做為介電薄膜來維持Cell足夠的電容值將愈來愈困難,因此採用新式的高介電薄膜材料將會是0.13微米以下的重點。本論文實驗將針對Al2O3高介電薄膜做為研究,利用其良好的化學穩定性和熱穩定性,研究做為DRAM電容材料的材料結構及電性上的探討。
此外在過去本實驗室曾對DRAM電容的上、下電極做過深入的探討,其中發現以含氧氣氛濺鍍出之PtOx薄膜發現具有增加電極表面積的效果。將所濺鍍之PtOx經由約300℃左右的熱處理溫度將使PtOx薄膜中的O脫離膜表面,使PtOx還原為Pt,且受到表面張力的影響,Pt將在膜表面收縮形成類似Si半球型晶粒的表面,將有效增加電極的接觸面積,達到增加電容值的效果。由此可知對於未來逐漸邁入奈米尺度的DRAM製程中,PtOx將會是深具潛力的電極材料。
除了PtOx電極材料的選擇外,近幾年另一項深具潛力的電極材料TiN也是近幾年研究重點。TiN原本在半導體工業中主要是當作防擴散的阻擋層來使用,主要是因為當元件速度上的要求愈來愈快,利用導電度較佳的Cu作為導電材料慢慢已成為趨勢,但Cu在升高溫熱處理的過程中擴散情況嚴重,為避免因擴散造成元件短路操作的問題,都會在鍍上Cu之前先在界面利用濺鍍或蒸鍍的方式鍍上一層TiN來阻擋擴散問題。因此在DRAM工業中若能直接以TiN做為導電的電極,不僅能有良好的製程整合性,對於將來採用MIM結構的DRAM電容也能簡化製程的步驟,降低成本。
因此本論文實驗當中將研究利用ALCVD做為成長Al2O3高介電常數材料,採用三甲基鋁 (trimethylaluminum, TMA) 作為Al的先趨物,水為氧化劑來進行Al2O3超微薄膜之鍍製。針對未來MIM電容結構中不同上、下電極對k值的影響。主要使用的底電極包括:Pt、PtOx、TiN三種不同形態表面k值的比較,並採用兩種不同上電極:Al、Au。同時也將做不同熱處理溫度對底電極表面粗糙度和對Al2O3電性上的影響。期望能把薄膜厚度控制在~10nm以下,獲得100奈米世代以下電容值的要求,漏電流控制在1V工作電壓下小於1x10-8 A/cm2。
1.Isuppli網站
2.黃維邦, “利用Pt(O)電極開發五氧化二鉭( Ta2O5 )薄膜之選擇性化學氣相沈 積技術研究”, 清華大學, 碩士論文 (2001)
3.張志祥, “利用低壓化學氣相沉積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究”, 清華大學, 博士論文 (2000)
4.新電子科技雜誌, “未來DRAM的發展趨勢”, 153 (1998/12)
5.林振華、林振富, “ULSI DRAM技術”, 全華科技圖書股份有限公司 (2001)
6.張志祥, 吳泰伯, “ G bit DRAM應用之強介電薄膜技術與發展”, 材料會訊, 4(3), (1997) 11
7.D. E. Kotecki, “High-k Dielectric Materials for DRAM Capacitors”, Semiconductor International, 109 (1999)
8.曾鴻輝, “動態隨機存取記憶體之電容器的製造方法”, 電子資訊, 4(1), 14 (1998)
9.A. Nitayama, Y. Kohyama, and K. Hieda, “Future Directions for DRAM Memory Cell Technology”, IEDM 98 (1998)
10.K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee, and B. J. Park, “A 0.15um DRAM Technology Node for 4 Gb DRAM”, Symp. On VLSI Tech. Dig. of Tech. Paper, 16 (1998)
11.K. S. Tang, W. S. Lau, and G. S. Samudra, “Trends in DRAM dielectrics”, IEEE Circuit and Devices, 27 (1997)
12.H. S. Moon a), H. S. Choi, H. G. Jang, C. J. Hwang, S. H. Woo, I. K. Han, and H. S. Yang, ”Improvement of properties of dynamic random access memories capacitors by PH3 plasma doping process after the formation of hemispherical-grained silicon”, J. Vac. Sci. Technol. B 17, 1017 (1999)
13.Hirohito Watanabe, Nahomi Aoto, Saburo Adachi, and Takamaro Kikkawa, “Device application and structure observation for hemispherical-grained Si”, J. Appl. Phys. 71, 3538 (1992)
14.N. Matsuo, H. Ogawa, T. Kouzaki, and S. Okada, “Nucleation and growth mechanism of hemispherical grain polycrystalline silicon”, Appl. Phys. Lett. 60, 2607 (1992)
15.J. M. Sallese a), A. Ils, D. Bouvet, P. Fazan, and Chris Merritt, “ Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation”, J. Appl. Phys. 88, 5751 (2000)
16.Hiroshi Iwai, and Shun’ichiro Ohmi, “CMOS downsizing and high-k gate insulator technology”, IEEE Device, Circuit, and System (2002)
17.G. Lucovsky, “Electronic structure of high-k transition-metal and rare-earth gate dielectrics for aggressively-scaled silicon devices”, IWGI, 14 (2001)
18.International Technology Roadmap for Semiconductor 2003, 2004
19.劉子平, “下電極材料對化學氣相沉積Ta2O5薄膜應用在動態隨機存取記憶體 影響之研究”, 清華大學, 博士論文 (2002)
20.李佩娟, “以反應式濺鍍法製作低溫度係數(Ta,Ti)N薄膜電阻與高介電常數( Ta2O5)1-x-(TiO2)x薄膜電容”, 清華大學, 碩士論文 (1998)
21.K. L. Saenger, and S. M. Rossnagel, “Properties and Decomposition Behaviors of Reactively Sputtered Pt(O) Electrode Material”, Mat. Res. Soc. Symp. Proc., 598, 57 (2000)
22.M. H. Kim, T. S. Park, and E. Yoon, “Changes in preferred orientation of Pt thin films deposited by DC magnetron sputtering using Ar/O2 gas mixtures”, J. Mater. Res., 14(4), (1999) 1255
23.國家奈米元件實驗室, “積體電路製程技術訓練班講義”, (2004)
24.國家奈米元件實驗室, ”積體電路製程技術見習班講義”, (2004)
25.A. Waxman and K. H. Zaininger, “ Al2O3-silicon insulator gate field effect transistor”, Appl. Phys. Lett. 12, 109 (1968)
26.V. Kottler, M. F. Gillies, and A. E. T. Kuiper, “An in situ x-ray photoelectron spectroscopy study of AlOx spin tunnel barrier formation”, J. Appl. Phys. 89, 3301 (2001)
27.M. F. Gillies, A. E. T. Kuiper, R. Coehoorn, and J. J. T. M. Donkers, “Compositional, structural, electrical characterization of plasma oxidized thin aluminum layer for spin-tunnel junctions”, J. Appl. Phys. 88, 429 (2000)
28.Han Gao, Cheng Mu, Fan Wang, Dongsheng Xu, Kai Wu,a) and Youchang Xie, “Field emission of large-area and graphitized carbon nanotube array on anodic aluminum oxide template”, J. Appl. Phys. 93, 5602 (2003)
29.Aurelian C. Ga^lca, E Stefan Kooij,a) Herbert Wormeester, and Cora Salm, “Structural and optical characterization of porous anodic aluminum oxide”, J. Appl. Phys. 94, 4296 (2003)
30.G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys, 89 5234 (2001)
31.M. Copel, E. Cartier, E. P. Gusev, S. Guha, N. Bojarczuk, and M Poppeller, Appl. Phys. Lett. 78, 2670 (2001)
32.M. Leskela and M. Ritala, J. Phys. (France) Ⅳ5, C5-937, (1995)
33.E. Fredriksson and J. O. Carlsson, J. Chem. Vapor Dep. 1. 333 (1993)
34.D. Riihela, M. Ritala, R. Matero, and M. Leskela, Thin Solid Films 289, 250 (1996)
35.連振炘, “金氧半元件物理課程講義 Chap. 8”, (2004)
36.Michel Houssa, “High-K Gate Dielectrics”, published by Institute of Physics Publishing (2004)
37.James Kolodzey, Enam Ahmed Chowdhury, Thomas N. Adam, Guohua Qui, I. Rau, Johnson Olufemi Olowolafe, John S. Suehle, and Yaun Chen, “Electrical conduction and dielectric breakdown in aluminum oxide insulators on silicon”, IEEE, Trans. Elec. Dev. 47, 121 (2000)
38.G. D. Wilk a), R. M. Wallace b),and J. M. Anthony,” Applied Physics Review: High-k gate dielectrics: Current status and materials properties considerations”, J. Appl. Phys. 89, 5243 (2001)
39.Dae-Gyu Park a), Heung-Jae Cho, Kwan-Yong Lim, Chan Lim, In-Seok Yeo, Jae-Sung Roh, and Jin Won Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys. 89, 6275 (2001)
40.莊達人, “VLSI製造技術”
41.Szu-Wei Huang and Jenn-Gwo Hwu, “Electrical characterization and process control of cost-effective high-k aluminum oxide gate dielectrics prepared by Anodization Followed by furnace annealing”, IEEE Trans. Elec. Dev. 50, 1658 (2003)
42.Chih-Sheng Kou, Jui-Feng Hsu, Szu-Wei Huang, Lurng-Shehng Lee, Ming-Jinn Tsai, and Jenn-Gwo Hwu, “High-k Al2O3 gate dielectrics prepared by oxidation of aluminum film in nitric acid followed by high-temperature annealing”, IEEE Trans. Elec. Dev. 51, 854 (2004)
43.James D. Plummer, Michael D. Deal, Peter B. Griffin, “Silicon VLSI Technology Fundamentals, Practice and Modeling”, published by Prentice Hall Electronics and VLSI Series
44.Toshiro Maruyama, and Susumu Arai, “Aluminum oxide thin films prepared by chemical vapor deposition from aluminum acetylacetonate”, Appl. Phys. Lett. 60, 322 (1992)
45.J. S. Kim, H. A. Marzouk, P. J. Reucroft, J. D. Roberision, and C. E. Hamrin, Jr., “Fabrication of aluminum oxide thin films by a low-pressure metalorganic chemical vapor deposition technique”, Appl. Phys. Lett. 62, 681 (1993)
46.H. O. Pierson, “Handbook of Chemical Vapor Deposition Principles, Technology and Application”, Noyes Publications U.S.A., (1995)
47.S. Guha a), E. Cartier, N. A. Bojarczuk, J. Bruley b), L. Gignac, and J. Karasinski, “High-quality aluminum oxide gate dielectrics by ultra-high vacuum reactive atomic-beam deposition”, J. Appl. Phys. 90, 512 (2001)
48.G. S. Higashi, and C. G.Fleming, “Sequential surface chemical reaction limited growth of high quality Al2O3 dielectric”, Appl. Phys. Lett. 55, 1963 (1989)
49.Ronald Kuse,a) Manisha Kundu, Tetsuji Yasuda, Noriyuki Miyata, and Akira Toriumi, “Effect of precursor concentration in atomic layer deposition of Al2O3”, J. Appl. Phys. 94, 6411 (2003)
50.Yuniarto Widjaja, Charles B. Musgrave,a) “Quantum chemical study of the mechanism of aluminum oxide atomic layer deposition”, Appl. Phys. Lett. 80, 3304 (2002)
51.Martin M. Frank a),b), Yves J. Chabal b) and Glen D. Wilk b), “Nucleation and interface formation mechanisms in atomic layer deposition of gate oxides”, Appl. Phys. Lett. 82, 4758 (2003)
52.J. B. Kim, D. R. Kwon, K. Chakrabarti, Chongmu Lee a) K.Y. Oh, and J.H. Lee, “Improvement in Al2O3 dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique”, J. Appl. Phys. 92, 6739 (2002)
53.M. Ritala, H. Saloniemi, M. Leskela, T. Prohaska, G, Friedbacher, and M. Grasserbauer, Thin Solid Films 286, 54 (1996)
54.R. Matero, A. Rahtu, M. Ritala, M. Leskela, and T. Sajavaara, Thin Solid Films 368, 1 (2000)
55.D. R. Strongin, J. F. Moore, and M. W. Ruckman, “Synchrotron radiation assisted deposition of aluminum oxide form condensed layer of trimethylaluminum and water at 78K”, Appl. Phys. Lett. 61. 792 (1992)
56.Suvi Haukka, Eeva-Liisa, and Toumo Suntola, “Surface coverage of ALE precursors on oxides”, Appl. Surf. Sci. 82/83, 548-552 (1994)
57.H. S. Nalwa, “Handbook of thin film materials: Vol. 1 Deposition and processing of thin films”, publishes by Academic Press, P.103~P.159
58.T.M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hegde, I. J. Baumyol, and G. N. Parsons a), “Evidence of aluminum silicate formation during chemical vapor deposition of amorphous Al2O3 thin films on Si(100)”, Appl. Phys. Lett. 75, 4001 (1999)
59.Aicha A. R. Elshabini-Riad Fred D. “ Thin Film Technology Handbook”, The McGraw-Hill Companies, Inc, ISBN0-07-115998-7
60.陳力俊等人主編,”微電子材料與製程”, (2000) P.107
61.H. N. AlShareef, K. D. Gifford, S. H. Rou, P. H. Hren, O. Auciello, A. I. KIngon, Integrated Ferroelectrics, (1993) P.321
62.Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electroinc Mater., 27 (1998) P.418
63.T. Maeder, L. Sagalowicz and P. Muralt, “ Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers”, Jpn. J. Appl. Phys. 37, 2007 (1998)
64.吳世全, 電子期刊第五卷第五期, P.129
65.J. R. Mcbride, G. W. Graham, C. R. Peters, and W. H. Weber, “Growth and characterization of reactively sputtered thin-film platinum oxides”, J. Appl. Phys. 69, 1596 (1991)
66.Yoshio Abe, Midori Kawamura and Katsutaka Sasaki, “Preparation of PtO and α-PtO2 thin films by reactive sputtering and their electric properties”, Jpn. J. Appl. Phys. 38, 2092 (1999)
67.Kwangbae Lee a), Byung Roh Rhee, and Chanku Lee, “Characteristics of ferroelectric Pb(Zr,Ti)O3 thin films having Pt/PtOx electrode barrier”, Appl. Pyhs. Lett. 79, 821 (2001)
68.Jae-Hyun JOO, Wan-Don Kim, Yong-Kuk Jeong, Seok-Jun Won, Soon-Yeon Park, Cha-Young YOO, Sun-Tae Kim and Joo-Tae Moon, “ Rugged metel electrode (RME) for high density memory devices”, Jpn. J. Appl. Phys. 40, 826 (2001)
69.Jae Hyoung Choi, Jeong-Hee Chung, Se-Hoon Oh, Jeong Sik Choi, Cha-young Yoo, Sung-Tae Kim, U-In Chung, and Jeong-Tae Moon, “New approaches to Improve the Endurance of TiN/HfO2/TiN Capacitor during the Back-end process for 70nm DRAM Device”, IEDM 03-661, 2003
70.D. Mao, and J. Hopwood, “Ionized physical vapor deposition of titanium nitride: A deposition model”, J. Appl. Phys. 96, 820 (2004)
71.C. –S. Shin, S. Rudenja, D. Gall, N. Hellgren, T. –Y. Lee, I. Petrov a), and J. E. Greene, “ Growth, surface morphology, and electrical resistivity of strained substoichiometric epitaxial TiNx (0.67<x<1) layer on MgO (100)”, J. Appl. Phys. 95, 356 (2004)
72.Sang Bom Kang, Yun Sook Chae, Mee Young Yoon, Hyeun Seog Leem, Chang Soo Park, Sang In Lee, and Moon Yong Lee, “Low temperature processing of conformal TiN by ACVD (advanced chemical vapor deposition) for Multilevel Metallization in high Density ULSI Devices”, IEEE, IITC 102-104 (1998)
73.J. Westlinder, T.Schram, L. Pantisano, E. Cartier, A, Kerber, G. S. Lujan, J. Olsson, and G. Groeseneken, “On the thermal stability of atomic layer deposited TiN as gate electrode in MOS devices”, IEEE Electron Device Letter, Vol. 24, No.9, 2003
74.B. E. Gnade, S. R. Summerfelt and D. Crenshaw, “Processing and Device Issues of High Permittivity Materials for DRAMs”, O. Auciello and R. Waser (eds.), Science and Technology of Electroceramic Thin Films, published by Kluwer Ademic Publisher, (1995)
75.A. J. Moulson and J. M. Herbet, “Electroceramics-Materials、Properties、Applications”, published by Chapman and Hall, (1990)
76.L. L. Hencb and J. K. West, “Principles of Electronic Ceramics”, published by John Wiley and Sons, Inc.. (1990)
77.M. W. Barsoum, “Fundamentals of Ceramics”, published by McGraw-Hill, Inc., (1997)
78.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, published by John Wiley Sons, (1991)
79.吳朗, “電子陶瓷-介電”, 全欣資訊圖書, (1994)
80.M. Ohring, “The materials Science of Thin Films”, published by Academic Press, Inc., (1992)
81.李雅明, “固態電子學”, 全華科技圖書, (1995)
82.A. Rose, “Space-Charge-Limited Currents in Solids”, Phys. Rev., 97(6), (1995) 1538
83.M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps”, Phys. Rev., 103(6), (1956) 1648
84.C. A. Mead, “Electron Transport Mechanisms in Thin Insulating Films”, Phys. Rev., 128(5), (1962) 2088
85.J. G. Simmons, “Potential Barriers and Emission-Limited Current Flow Between Closely Spaced Parallel Metal Electrode”, J. Appl. Phys. 35,2472 (1964)
86.K. L. Chopra, “Avalanche-Induced Negative Resistance in Thin Oxide Films”, J. Appl. Phys. 36, 184 (1965)
87.S. M. Sze, “Current Transport and Maximum Dielectric Strength of Silicon Nitride Films”, J. Appl. Phys. 38, 2951 (1967)
88.J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems”, Phys. Rev. 155, 657 (1967)
89.S. M. Hu, D. R. Kerr and L. V. Gregor, “Evidence of Hole Injection and Trapping in Silicon Nitride Films Prepared by Reactive Sputtering”, Appl. Phys. Lett. 10, 97 (1967)
90.J. R. Yeargan, “The Poole-Frenkel Effect with Compensation Present”, J. Appl. Phys. 39, 5600 (1968)
91.P. C. Arnett and N. Klein, “Poole-Frenkel Conduction and the Neutral Trap”, J. Appl. Phys. 46, 1399 (1975)