研究生: |
陳楷軒 Chen, Kai Hsuan |
---|---|
論文名稱: |
奈米碳管紙之製備及其作為海水電池陰極放電研究 Preparation and characterization of carbon nanotube papers as cathode materials for seawater battery |
指導教授: |
徐文光
Hsu,Wen-Kuang |
口試委員: |
許景棟
HSU,CHING-TUNG 呂昇益 LYU,SHENG-YI 徐文光 Hsu,Wen-Kuang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 海水電池 、奈米碳管 |
外文關鍵詞: | seawater battery, carbon nanotube |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電極材料特性在電化學研究上扮演一個重要的角色。例如電容器上的電流收集器儲存電荷能力(比電容)、電池的放電能力及穩定性等都是針對電極材料作研究。很多研究針對陰極材料的選擇或製程上的不同做分析,如在相同材料上添加特殊的材質等,目的就是要有更大的比表面積以及循環壽命穩定的提升。碳管紙纖維材料也是近年來很熱門的材料,質量輕、具有可撓性同時因為和碳管結合而具有一定的強度,以及製造簡單成本低等優點,對於未來的可撓式裝置電池材料有著極大的發展潛力。在實驗中,我們使用酸化奈米碳管以及經由強鹼反應過後的碳管當作碳管紙原料,和紙漿混和製成碳管紙使碳管在紙纖維上均勻分布提升比表面積增加比電容值。在海水電解液的部分使用碳管紙當作陰極,以AZ61鎂鋁合金當作陽極反應放電,可以使LED元件長時間穩定發亮。在碳管結構以及材料表面形貌由拉曼光譜以及場發式電子顯微鏡觀察。在電化學性質量測部分,包含比電容值計算、倍率性能、電化學阻抗以及海水電池放電測試。最後將製備原料-碳管懸浮液進行粒徑大小分析、分散性指數以及Zeta電位量測來驗證改質奈米碳管的性質。
Electrodes play an important role in determining the performance of electrochemistry properties, such as specific capacitance of supercapacitors and discharging capability of batteries. Recent studies focus on cathode materials and found that carbon nanotube papers are one of potential cathode materials because of their light weight and low cost. Papers are flexible and may replace metal based cathodes for flexible mobile devices as well as tablet PC in the future. Here acid treated multi-walled carbon nanotubes (MWCNTs) are mixed with normal paper to form conductive papers. By upgrading specific area, we obtain a greater specific capacitance and scan current. For seawater batteries, carbon nanotube papers are used as cathode materials and magnesium alloy (AZ61) as anode. Electrons are released from alloy through oxidations and are then collected by carbon nanotube papers, resulting in H2 generation at cathode. Batteries discharge stably for a small current which is sufficient to power LEDs over 24 h. The physical properties and morphologies of carbon nanotube papers are characterized by field emission scanning electron microscopy (FE-SEM) and Raman measurement. The electrochemical properties, including capacitance, rate capability, discharge test, electrochemistry impedance spectrum analysis, and linear sweep voltammetry, are also studied. Finally, electrochemical properties of carbon nanotube paper are measured by zeta-sizer instrument to uncover the zeta potential, polydispersity index and particle diameter analysis.
1. Iijima, S., Helical microtubules of graphitic carbon. nature 1991, 354 (6348), 56-58.
2. (a) Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical review letters 2000, 84 (24), 5552; (b) Yu, M.-F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287 (5453), 637-640.
3. De Heer, W. A., Nanotubes and the pursuit of applications. MRS bulletin 2004, 29 (04), 281-285.
4. Hone, J.; Llaguno, M.; Biercuk, M.; Johnson, A.; Batlogg, B.; Benes, Z.; Fischer, J., Thermal properties of carbon nanotubes and nanotube-based materials. Applied Physics A 2002, 74 (3), 339-343.
5. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G., Crystalline ropes of metallic carbon nanotubes. Science-AAAS-Weekly Paper Edition 1996, 273 (5274), 483-487.
6. Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K.; Smalley, R. E., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical physics letters 1999, 313 (1), 91-97.
7. (a) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A., Carbon nanotubes--the route toward applications. Science 2002, 297 (5582), 787-792; (b) Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials 2003, 15 (5), 353-389.
8. Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, u. M., Electronic structure of chiral graphene tubules. Applied physics letters 1992, 60 (18), 2204-2206.
9. Zhao, X.; Liu, Y.; Inoue, S.; Suzuki, T.; Jones, R. O.; Ando, Y., Smallest Carbon Nanotube Is $3\text{\,}\text{\,}\mathrm{\AA{}}$ in Diameter. Physical Review Letters 2004, 92 (12), 125502.
10. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C., Science of fullerenes and carbon nanotubes: their properties and applications. Academic press: 1996.
11. (a) Dresselhaus, M.; Eklund, P., Phonons in carbon nanotubes. Advances in Physics 2000, 49 (6), 705-814; (b) Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Physical properties of carbon nanotubes. World Scientific: 1998; Vol. 4; (c) Chico, L.; Crespi, V. H.; Benedict, L. X.; Louie, S. G.; Cohen, M. L., Pure carbon nanoscale devices: nanotube heterojunctions. Physical Review Letters 1996, 76 (6), 971.
12. Dai, H., Carbon nanotubes: opportunities and challenges. Surface Science 2002, 500 (1), 218-241.
13. Simon, P.; Gogotsi, Y., Materials for electrochemical capacitors. Nature materials 2008, 7 (11), 845-854.
14. Zhang, L. L.; Zhao, X., Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531.
15. Pandolfo, A.; Hollenkamp, A., Carbon properties and their role in supercapacitors. Journal of power sources 2006, 157 (1), 11-27.
16. Cairnsb, O. H. a. E. J., Electrochemical energy storage. 1999.
17. Conway, B.; Pell, W., Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. Journal of Solid State Electrochemistry 2003, 7 (9), 637-644.
18. Zhu, J.; Chen, M.; Qu, H.; Luo, Z.; Wu, S.; Colorado, H. A.; Wei, S.; Guo, Z., Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy & Environmental Science 2013, 6 (1), 194-204.
19. Raymond L. Tayloig'Summit, N. J., assigner to Bell Telephone Laboratories, Incorporated,; New York, N. Y., a corporation of New York, UNITED STATES PATENT OFFICE-SEA-WATER BATTERY. 1945.
20. Koontz, R., et al., Magnesium water-activated batteries, in Handbook of batteries. . 2002.
21. Wilcock, W. S.; Kauffman, P. C., Development of a seawater battery for deep-water applications. Journal of power sources 1997, 66 (1), 71-75.
22. Hasvold, Ø.; Henriksen, H.; Melv˦r, E.; Citi, G.; Johansen, B. Ø.; Kjønigsen, T.; Galetti, R., Sea-water battery for subsea control systems. Journal of Power Sources 1997, 65 (1–2), 253-261.
23. Hasvold, Ø.; Lian, T.; Haakaas, E.; Størkersen, N.; Perelman, O.; Cordier, S., CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. Journal of power sources 2004, 136 (2), 232-239.
24. Zhao, J.; Yu, K.; Hu, Y.; Li, S.; Tan, X.; Chen, F.; Yu, Z., Discharge behavior of Mg–4wt% Ga–2wt% Hg alloy as anode for seawater activated battery. Electrochimica Acta 2011, 56 (24), 8224-8231.
25. Cao, D.; Wu, L.; Wang, G.; Lv, Y., Electrochemical oxidation behavior of Mg–Li–Al–Ce–Zn and Mg–Li–Al–Ce–Zn–Mn in sodium chloride solution. Journal of Power Sources 2008, 183 (2), 799-804.
26. Wang, N.; Wang, R.; Peng, C.; Feng, Y., Enhancement of the discharge performance of AP65 magnesium alloy anodes by hot extrusion. Corrosion Science 2014, 81, 85-95.
27. Wang, N.-g.; Wang, R.-c.; Peng, C.-q.; Hu, C.-w.; Yan, F.; Bing, P., Research progress of magnesium anodes and their applications in chemical power sources. Transactions of Nonferrous Metals Society of China 2014, 24 (8), 2427-2439.
28. Chen, H. M.; Li, Y.; Feng, Y. Y.; Lv, P.; Zhang, P.; Feng, W., Electrodeposition of carbon nanotube/carbon fabric composite using cetyltrimethylammonium bromide for high performance capacitor. Electrochimica Acta 2012, 60, 449-455.
29. Hu, L.; Choi, J. W.; Yang, Y.; Jeong, S.; La Mantia, F.; Cui, L.-F.; Cui, Y., Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences 2009, 106 (51), 21490-21494.
30. Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46 (6), 833-840.
31. Ma, R.; Liang, J.; Wei, B.; Zhang, B.; Xu, C.; Wu, D., Study of electrochemical capacitors utilizing carbon nanotube electrodes. Journal of Power Sources 1999, 84 (1), 126-129.
32. Worldwide, M. I., Dynamic Light Scattering Introduction.
33. Scientific, H., Dynamic Light Scattering Technology.
34. Arzenšek, D., Dynamic light scattering and application to proteins in solutions. Ljubljana: 2010.
35. Shaw, D. J., Introduction to Colloid and Surface Chemistry. 1992.
36. Malvern, Zeta potential - An introduction in 30 minutes. 2015.
37. van der Pauw, L. J., A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape. 1958.
38. van der Pauw電阻率量測實驗.
39. W.Plieth, Electrochemistry for Material Science. 2007.
40. 李珠, 感應耦合電漿質譜儀技術及其在材料分析上的應用. 2002.
41. Li, S.; Xing, D.; Li, J., Dynamic light scattering application to study protein interactions in electrolyte solutions. Journal of biological physics 2004, 30 (4), 313-324.
42. Worldwide, M. I., Zeta potential - An introduction in 30 minutes. 2015.
43. Hunter, R. J., Zeta potential in colloid science: principles and applications. Academic press: 2013.
44. Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A., Raman spectroscopy of carbon nanotubes. Physics reports 2005, 409 (2), 47-99.
45. Rao, A.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P.; Williams, K.; Fang, S.; Subbaswamy, K.; Menon, M.; Thess, A., Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275 (5297), 187-191.
46. wikipedia, Van der Pauw method. (Van der Pauw method).
47. Wang, G.; Zhang, L.; Zhang, J., A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012, 41 (2), 797-828.
48. Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M., Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences 2007, 104 (34), 13574-13577.
49. Winter, M.; Brodd, R. J., What are batteries, fuel cells, and supercapacitors? Chemical reviews 2004, 104 (10), 4245-4270.
50. Li, X.; Kang, F.; Bai, X.; Shen, W., A novel network composite cathode of LiFePO 4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications 2007, 9 (4), 663-666.
51. Balasubramanian, R.; Veluchamy, A.; Venkatakrishnan, N.; Gangadharan, R., Electrochemical characterization of magnesium/silver chloride battery. Journal of power sources 1995, 56 (2), 197-199.