簡易檢索 / 詳目顯示

研究生: 陳維廷
Chen, Wei-Ting
論文名稱: 6’-, 2-延伸之醣脂神經醯胺類似物製備之研究
Investigation on the preparation of 6’-, 2-derivatized galactosylceramide analogs
指導教授: 俞鐘山
口試委員: 林武智
李德偉
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 130
中文關鍵詞: 自然殺手T細胞醣脂神經醯胺醣基化反應氫化醯胺化反應
外文關鍵詞: iNKT Cells, galactosylceramide, glycosylation, hydrogenation, amide bond formation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文目的為製備可在6’-, 2-進行修飾之醣脂神經醯胺核心化合物(18) (6’-, 2-aminos galactosyl phytosphingosine)。論文中6’-, 2-胺基醣脂神經醯胺核心化合物之製備,醣端予體(6)是由商品化半乳醣經6步合成而得,產率為25%。受體(13)則由商品化神經鞘胺醇經由4步合成而得,產率為56%。再經由醣基化反應可得到醣脂質類似物,產率97%,而α/β比值為3。
    核心化合(18) (6’-, 2-aminos galactosyl phytosphingosine)經由去甲醯基與氫化而得,總產率11.7%。
    核心化合最後經由醯胺化最終分別得到醣脂神經醯胺類似物(19)、(20)、(21)、(22)。經由HPLC純化後,將分析其對於iNKT-Cell誘導增生之能力。


    This thesis is aimed to prepare 6’-, 2-derivatized galactosylceramide analogs. Before preparation of core compound (18) 6’-, 2-aminos galactosyl phytosphingosine, donor (6) and acceptor (13) were firstly prepared. The sugar moiety (6) was obtained via a 6-step synthesis, starting from commercial galactose in 25% yield; the acceptor (13) was prepared from commercial phytosphingosine via 4-step synthesis in 41% yield. Then via glycosylation we obtained glycolsphingosine analog in 97% yield with α/β ratio of 3/1.
    The core compound (18) was obtained via debenzoylation and hydrolysis and the total yield was 11.7%.
    The final 6’-, 2-derivatized galactosylceramide analogs (19), (20), (21), (22), was obtained via amide bond formation and purified through HPLC. The analogs will be analyzed its potential as iNKT-Cell inducer.

    目錄 摘要 I Abstract II 關鍵字(key words) III 縮寫對照表 XI 第一章 緒論 1 1-1 醣脂神經醯胺(glycosphingolipids, GSLs) 1 1-2 醣脂神經醯胺功能與相關之病理 2 1-2-1醣脂神經醯胺與脂筏(lipid rafts) 2 1-2-2醣脂神經醯胺與病原 2 1-2-3醣脂神經醯胺與自然殺手細胞 3 1-2-4醣脂神經醯胺與免疫疾病 3 1-2-5醣脂神經醯胺與癌症 4 1-2-6醣脂神經醯胺與大腦 4 1-3 半乳糖神經醯胺(galactosylceramide, GalCer)的發現 4 1-4 α-GalCer (KRN7000)結構及相關研究 5 1-5 α-GalCer類似物之應用 6 1-5-1癌症的治療 6 1-5-2自體免疫疾病的治療 6 1-5-3傳染病的治療 7 1-5-4疫苗佐劑 7 第二章 研究動機 10 第三章結果與討論 11 3-1逆合成分析 11 3-2予體製備 12 3-2-1 化合物(8)製備與討論 13 3-2-1.1 化合物(8)的純化 14 3-2-1.2 製備化合物(8)可能之其它合成策略 14 3-2-2 化合物(6)製備 15 3-2-2 予體化合物(9)製備 15 3-3受體(13)、(24)製備 16 3-3-1 受體化合物(10)之製備 17 3-3-1.1 製備含氮化合物應注意的安全事項 17 3-3-2 受體(13)製備,化合物(12)掉TBDMS 17 3-4醣基化反應(glycosylation) 18 3-4-1 醣基化反應之構型判定 18 3-4-2予體(6)與受體(13)、(24)之醣基化反應 19 3-4-2.1 前處理與實驗方法 20 3-4-2.2 受體對於醣基化反應之影響 22 3-4-2.3 溫度對於醣基化反應之影響 23 3-4-2.4 溶劑對於醣基化反應之影響 24 3-4-3 予體離去基對於醣基化反應之影響 24 3-4-4 合成KRN7000類似物之醣基化反應其他離去基選擇 25 3-5化合物(15a)去保護( deprotection 30 3-6化合物(17)之氫化 30 3-6-1 化合物(17)氫化條件與應注意事項 30 3-6-2 化合物(17)氫化反應觀察技巧 31 3-6-3 氫化產物(18)純化方法 31 3-6-4 氫化產物(18)NMR光譜 32 3-7醯胺鍵的合成Amide bond formation 33 第四章 實驗部分 34 4-1 一般實驗方法 34 4-2 實驗方法與光譜 37 第五章 結論 70 參考資料 71 Appendix 92

    1. Vankar, Y. D.; Schmidt, R. R. Chemistry of glycosphingolipids- carbohydrate molecules of biological significance. Chem. Soc. Rev. 2000, 29, 201-216.
    2. Varki, A.; Sharon, N.; Varki, A.; Cummings, R. D.; Esko, J. D.; Freeze, H. H.; Stanley, P.; Bertozzi, C. R.; Hart, G. W.; Etzler, M. E. Eds. Essentials of Glycobiology, 2nd ed. Cold Spring Harbor Laboratory Press,Cold Spring Harbor, NY. 2009.
    3. Wennekes, T.; van den Berg, R.; Boot, R. G.; van der Marel, G. A.; Overkleeft, H. S.; Aerts, J. Glycosphingolipids—Nature, Function, and Pharmacological Modulation. Angew. Chem. Int. Edit. 2009, 48, 8848-8869.
    4. 張凱翔 合成胺基神經醯胺醇之類似物做為核心化合物以建構醯胺化生物分子庫;國立清華大學碩士論文 2009.
    5. Hannun, Y. A.; Obeid, L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 2008, 9, 139-150.
    6. Pike, L.J. The challenge of lipid rafts. J. Lip. Res. 2009, 50, 323-328.
    7. Smith, D. C.; Lord, J.M., L.; Roberts, M.; Johannes, L. Glycosphingolipids as toxin receptors. Semin. Cell. Dev. Biol., 2004, 15, 397-408.
    8. Kaer, L. V. α-Galactosylceramide Therapy for Autoimmune Diseases: Prospects And Obstacles. Nat. Rev. Immunol. 2005, 5, 31-42.
    9. Kronenberg, M. Toward an Understanding of NKT Cell Biology: Progress and Paradoxes. Annu. Rev. Immunol. 2005, 26, 877-900.
    10. Tsuji, M. Glycolipids and phospholipids as natural CD1d-binding NKT cell ligands. Cell. Mol. Life Sci. 2006, 63, 1889-1898.
    11. Savage, P. B.; Teytonc, L.; Bendelac, A. Glycolipids for natural killer T cells. Chem. Soc. Rev. 2006, 35, 771-779.
    12. Bendelac, A.; Savage, P. B.; Teytonc, L. The Biology of NKT Cells. Annu. Rev. Immunol. 2007, 25, 297-336.
    13. Kronenberg , M.; Rudensky, A. Regulation of immunity by self-reactive T cells. Nature 2005, 435, 598-604.
    14. Yu R.K.; Nakatani Y.; Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. J. Lipid Res. 2009, 50, S440-S445.
    15. Hayashi, H.; N. Kimura, H.; Yamaguchi, K.; Hasegawa, T.; Yokoseki, M.; Shibata, N.; Yamamoto, M.; Michikawa, Y.; Yoshikawa, K.; Terao, et al. Neurobiology of Disease. J. Neurosci. 2004, 24, 4894-4902.
    16. Natori, T.; Koezuka, Y.; Higa, T. Agelasphins, novel α-galactosyl- ceramides from the marine sponge Agelas mauritianus. Tetrahedron Lett. 1993, 34, 5591-5592.
    17. Akimoto, K.; Natori, T.; Morita, M. Synthesis and stereochemistry of agelasphin-9b. Tetrahedron Lett. 1993, 34, 5593-5596.
    18. Natori, T.; Morita, M.; Akimoto, K.; Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 1994, 50, 2771-2784.
    19. Morita, M.; Motoki, K.; Akimoto, K.; Natori, T.; Sakai, T.; Sawa, E.; Yamaji, K.; Koezuka, Y.; Kobayashi, E.; Fukushima, H. Structure- activity relationship of alpha-galactosylceramides against B16- bearing mice. J. Med. Chem. 1995, 38, 2176-2187.
    20. Fuji, N.; Ueda, Y.; Fujiwara, H.; Itoh, T.; Yoshimura, T.; Yamagishi, Hisakazu. Antitumor Effect of a-Galactosylceramide (KRN7000) on Spontaneous Hepatic Metastases Requires Endogenous Interleukin 12 in the Liver. Clin. Cancer Res. 2000, 6, 3380-3387.
    21. Giaccone, G.; Punt, C. J. A.; Ando, Y.; Ruijter, R.; Nishi, N.; Peters, M.; von Blomberg, B. M. E.; Scheper, R. J.; van der Vliet, H. J. J.; van den Eertwegh, A. J. M.; Roelvink, M.; Beijnen, J.; Zwierzina, H.; Pinedo, H. M. Clin. Cancer Res. 2002, 8, 3702-3709.
    22. Kawano, T.; Cui, J.; Koezuka, Y.; Toura, I.; Kaneko, Y.; Motoki, K.; Ueno, H.; Nakagawa, R.; Sato, H.; Kondo, E.; Koseki, H.; Taniguchi, M. CD1d-Restricted and TCR-Mediated Activation of Vα14 NKT Cells by Glycosylceramides. Science. 1997, 278, 1626-1629.
    23. Prigozy, T. I.; Naidenko, O.; Qasba, P.; Elewaut, D.; Brossay, L.; Khurana, A.; Natori, T.; Koezuka, Y.; Kulkarni, A.; Kronenberg, M. Glycolipid Antigen Processing for Presentation by CD1d Molecules. Science. 2001, 291, 664-667.
    24. Zhou, D. P.; Mattner, J.; Cantu, C.; Schrantz, N.; Yin, N.; Gao, Y.; Sagiv, Y.; Hudspeth, K.; Wu, Y. P.; Yamashita, T.; Teneberg, S.; Wang, D. C.; Proia, R. L.; Levery, S. B.; Savage, P. B.; Teyton, L.; Bendelac, A. Lysosomal Glycosphingolipid Recognition by NKT Cells. Science. 2004, 306, 1786-1789.
    25. Zajonc, D.M.; Elsliger, M.A.; Teyton, L.; Wilson, I.A. Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15Å. Nat. Immunol. 2003, 4, 808-815.
    26. Zajonc, D. M.; Cantu, C.; Mattner, J.; Zhou, D. P.; Savage, P. B.; Bendelac, A.; Wilson, I. A.; Teyton, L. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nature Immunol. 2005, 6, 810-818.
    27. Borg, N. A.; Wun, K. S.; Kjer-Nielsen, L.; Wilce, M. C. J.; Pellicci, D. G.; Koh, R.; Besra, G. S.; Bharadwaj, M.; Godfrey, D. I.; McCluskey, J.; Rossjohn, J. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 2007, 448, 44-49.
    28. Miyamoto, K.; Miyake, S.; Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 2001, 413, 531-534.
    29. Sidobre , S.; Hammond, K. J. L.; Be´nazet-Sidobre L.; Maltsev, S. D.; Richardson, S. K.; Ndonye, R. M.; Howell A. R.; Sakai, T.; Besra, G. S.; Porcelli, S. A.; Kronenberg, M. The T cell antigen receptor expressed by Vα14i NKT cells has a unique mode of glycosphingo- lipid antigen recognition. Proc. Natl. Acad. Sci. USA 2004, 101, 12254-12259.
    30. Yu, K. O. A.; Im, J. S.; Molano, A.; Dutronc, Y.; Illarionov, P. A.; Forestier, C.; Fujiwara, N.; Arias, I.; Miyake, S.; Yamamura, T.; Chang, Y. T.; Besra, G. S.; Porcelli, S. A. Modulation of CD1d- restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 3383-3388.
    31. Xing, G. W.; Wu, D.; Poles, M. A.; Horowitz, A.; Tsuji, M.; Ho, D. D.; Wong, C. H. Synthesis and human NKT cell stimulating properties of 3-O-sulfo-α/β-galactosylceramides. Bioorg. Med. Chem. 2005, 13, 2907-2916.
    32. Fujio, M.; Wu, D. G.; Garcia-Navarro, R.; Ho, D. D.; Tsuji, M.; Wong, C. H. Structure-Based Discovery of Glycolipids for CD1d-Mediated NKT Cell Activation:  Tuning the Adjuvant versus Immunosuppression Activity. J. Am. Chem. Soc. 2006, 128, 9022-9023.
    33. Chang, Y. J.; Huang, J. R.; Tsai, Y. C.; Hung, J. T.; Wu, D.; Fujio,M.; Wong, C. H.; Yu, A. L. Potent immune-modulating and anticancer effects of NKT cell stimulatory glycolipids. Proc. Natl. Acad. Sci. USA 2007, 104, 10299-102304.
    34. Li, Q.; Ndonye, R. M.; Illarionov, P. A.; Yu, K. O. A.; Jerud, E. S.; Diaz, K. Bricard, G. Porcelli, S. A.; Besra, G. S. Chang, Y. T. Howell, A. R. Rapid Identification of Immunostimulatory α-Galactosyl- ceramides Using Synthetic Combinatorial Libraries. J. Comb. Chem. 2007, 9, 1084-1093.
    35. Schiefner, A.; Fujio, M.; Wu, D.; Wong, C. H.; Wilson, I. A. Structural Evaluation of Potent NKT Cell Agonists: Implications for Design of Novel Stimulatory Ligands. J. Mol. Biol. 2009, 394, 71-82.
    36. Lacone, V.; Hunault, J.; Pipelier, M.; Blot, V.; Lecourt, T.; Rocher, J.; Turcot-Dubois, A. L.; Marionneau, S.; Douillard, J. Y.; Clement, M.; Le Pendu, J.; Bonneville, M.; Micouin, L.; Dubreuil, D. Focus on the Controversial Activation of Human iNKT Cells by 4-Deoxy Analogue of KRN7000. J. Med. Chem. 2009, 52, 4960-4663.
    37. Kawano, T.; Cui, J.; Koezuka, Y.; Toura,, I.; Kaneko, Y.; Sato, H.; Kondo, E.; Harada, M.; Koseki, H.; Nakayama, T.; Tanaka, Y.; Taniguchi, M. Natural killer-like nonspecific tumor cell lysis mediated by specific ligand-activated Vα14 NKT cells. Proc. Natl. Acad. Sci. USA 1998, 95, 5690-5693.
    38. Takahashi, T.; Nieda, M.; Koezuka, Y.; Nicol, A.; Porcelli, S. A.; Ishikawa, Y.; Tadokoro, K.; Hirai, H.; Juji , T. Analysis of Human Vα24+ CD4+ NKT Cells Activated by α-Glycosylceramide-Pulsed Monocyte-Derived Dendritic Cells. J. Immunol. 2000, 164, 4458- 4464.
    39. Shin, T.; Nakayama, T.; Akutsu, Y.; Motohashi, S.; Shibata, Y.; Harada, M.; Kamada, N.; Shimizu, C.; Shimizu, E.; Saito, T.; Ochiai, T.; Taniguchi, M. Inhibition of tumor metastasis by adoptive transfer of IL-12-activated Vα14 NKT cells. Int. J. Cancer. 2001, 91, 523-528.
    40. Ishikawa, A.; Motohashi, S.; Ishikawa, E.; Fuchida, H.; Higashino, K.; Otsuji, M.; Iizasa, T.; Nakayama, T.; Taniguchi, M. Fujisawa, T. A Phase I Study of α-Galactosylceramide (KRN7000)-Pulsed Dendritic Cells in Patients with Advanced and Recurrent Non-Small Cell Lung Cancer. Clin. Cancer Res. 2005, 11, 1910-1917.
    41. Goff, R, D.; Gao, Y.; Mattner, J.; Zhou, D.; Yin, N.; Cantu, C.; Teyton, L.; Bendelac, A.; Savage P. B. Effects of Lipid Chain Lengths in α-Galactosylceramides on Cytokine Release by Natural Killer T Cells. J. Am. Chem. Soc. 2004, 126, 13602-13603.
    42. Oki, S.; Chiba, A.; Yamamura, T.; Miyake, S.; The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest. 2004, 113, 1631-1640.
    43. Berkers, C. R. Ovaa, H. Immunotherapeutic potential for ceramide-based activators of iNKT cells. Trends. Pharmacol. Sci. 2005, 26, 252-257.
    44. Sharif, S.; Arreaza, G. A.; Zucker, P.; Mi, Q. S.; Sondhi, J.; Naidenko, O. V.; Kronenberg, M.; Koezuka, Y.; Delovitch, T. L.; Gombert, J. M.; Leite-De-Moraes, M.; Gouarin, C.; Zhu, R.; Hameg, A.; Nakayama, T.; Taniguchi, M.; Lepault, F.; Lehuen, A.; Bach, J. F.; Herbelin, A. Activation of natural killer T cells by alpha-galactosyl- ceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 2001, 7, 1057-1062.
    45. Singh, A. K.; Wilson, M. T.; Hong, S.; Olivares-Villagomez, D.; Du, C.; Stanic, A. K.; Joyce, S.; Sriram, S.; Koezuka, Y.; Van Kaer, L. Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 2001, 194, 1801-1811.
    46. Zhou, X. T.; Forestier, C.; Goff, R. D.; Li, C. H.; Teyton, L.; Bendelac, A.; Savage, P. B. Synthesis and NKT cell stimulating properties of fluorophore-and biotin-appended 6''-amino-6''- deoxy-galactosylceramides. Org. Lett. 2002, 4, 1267-1270.
    47. Liu, Y.; Goff, R. D.; Zhou, D. P.; Mattner, J.; Sullivan, B. A.; Khurana, A.; Cantu, C.; Ravkov, E. V.; Lbegbu, C. C.; Altman, J. D.; Teyton, L.; BendelaC, A.; Savage, P. B. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods. 2006, 312, 34-39.
    48. Trappeniers, M.; Van Beneden, K.; Decruy, T.; Hillaert, U.; Linclau, B.; Elewaut, D.; Calenbergh, S. V. 6'-derivatised alpha-GalCer analogues capable of inducing strong CD1d-mediated Th1-biased NKT cell responses in mice. J. Am. Chem. Soc. 2008, 130, 16468-16469.
    49. Tashiro, T.; Nakagawa, R.; Inoue, S.; Shiozaki, M.; Watarai, H.; Taniguchi, M.; Mori, K. RCAI-61, the 6'-O-methylated analog of KRN7000: its synthesis and potent bioactivity for mouse lymphocytes to produce interferon-γ in vivo. Tetrahedron Lett. 2008, 49, 6827-6830.
    50. Gonzalez-Aseguinolaza, G.; de Oliveira, C.; Tomaska, M.; Hong, S.; Bruna-Romero, O.; Nakayama, T.; Taniguchi, M.; Bendelac, A.; Van Kaer, L.; Koezuka, Y.; Tsuji, M. α-galactosylceramide-activated Vα14 natural killer T cells mediate protection against murine malaria. Proc. Natl Acad. Sci. USA 2000, 97, 8461-8466.
    51. Kakimi, K.; Guidotti, L. G.; Koezuka, Y.; Chisari, F. V. Natural killer T cell activation inhibits hepatitis B virus replication in vivo. J. Exp. Med. 2000, 192, 921-930.
    52. Kawakami, K.; Kinjo, Y.; Yara, S.; Koguchi, Y.; Uezu, K.; Nakayama, T.; Taniguchi, M.; Saito, A. Activation of Vα14+ natural killer T cells by α-galactosylceramide results in development of Th1 response and local host resistance in mice infected with Cryptococcus neoformans. Infect. Immun. 2001, 69, 213-220.
    53. Chackerian, A.; Alt, J.; Perera, V.; Behar, S. M. Activation of NKT cells protects mice from tuberculosis. Infect. Immun. 2002, 70, 6302-6309.
    54. Gonzalez-Aseguinolaza, G.; Van Kaer, L.; Bergmann, C. C.; Wilson, J. M.; Schmieg, J.; Kronenberg, M.; Nakayama, T.; Taniguchi, M.; Koezuka, Y.; Tsuji, M. Natural killer T cell ligand α-galactosyl- ceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 2002, 195, 617-624.
    55. Huanga, Y.; Chen, A.; Li, X.; Chen, Z.; Zhang, W.; Song, Y.; Gurner, D.; Gardiner, D.; Basu, Sankha.; Ho, D. D.; Tsuji, M. Enhancement of HIV DNA vaccine immunogenicity by the NKT cell ligand, alpha-galactosylceramide. Vaccine 2008, 26, 1807-1816.
    56. Li, X.; Fujio, M.; Imamura, M.; Wu, D.; Vasan, S.; Wong, C. H.; Ho, D. D.; Tsuji, M. Design of a potent CD1d-binding NKT cell ligand as a vaccine adjuvant. Proc. Natl. Acad. Sci. USA 2010,107, 13010-13015.
    57. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Edit. 2001, 40, 2004 -2021.
    58. 廖國延 合成胺基醣苷神經醯胺類似物以建構醯胺化分子庫之研究;國立清華大學碩士論文 2009.
    59. 潘承澤 合成胺基醣類化合物以建構醯胺化衍生物分子庫;國立清華大學碩士論文 2009.
    60. 蘇文欽 含一級胺基醣脂之神經醯胺類似物之製備;國立清華大學碩士論文 2010.
    61. Hansen, H. C.; Magnusson, G. Synthesis of selected aminodeoxy analogues of galabiose and globotriose. Carbohydr. Res. 1999, 322, 166-180.
    62. Xia, C.; Zhang, W.; Zhang, Y.; Woodward, R. L.; Wang, J.; Wang, P. G. Facile synthesis of biotin-labelled a-galactosylceramide as antigen for invariant natural killer T cells. Tetrahedron 2009, 65, 6390-6395.
    63. Yan, R. B.; Yuan, M.; Wu, Y.; You, X.; Ye, X. S. Rational design and synthesis of potent aminoglycoside antibiotics against resistant bacterial strains. Bioorg. Med. Chem. 2011, 19, 30-40.
    64. Takeda, Y.; Katsuta, K.; Inoue, Y.; Hakushi, T. A Conductance Study of 1:1 Complexes of 15-Crown-5, 16-Crown-5, and Benzo-15-crown-5 with Alkali Metal Ions in Nonaqueous Solvents. Bull. Chem. Soc. Jpn. 1988, 61, 627-632.
    65. Armarego, W. L. F.; Chai, C.L.L.; Perrin, D. D. Purification of Laboratory Chemicals, 6th ed. Butterworth-Heinemann: Oxford. 2009.
    66. Xing, G. W.; Wu, D.; Poles, M. A.; Horowitz, A.; Tsuji, M.; Ho, D. D.; Wong, C. H. Synthesis and human NKT cell stimulating properties of 3-O-sulfo-α/β-galactosylceramides. Bioorg. Med. Chem. 2005, 13, 2907-2916.
    67. Xia, C. F.; Yao, Q. J.; Schumann, J.; Rossy, E.; Chen, W. L.; Zhu, L.Z.; Zhang, W. P.; De Libero, G.; Wang, P. G. Synthesis and biological evaluation of α-galactosylceramide(KRN7000) and isoglobotrihexosylceramide (iGb3). Bioorg. Med. Chem. Lett. 2006, 16, 2195-2199.
    68. Enders, D.; Terteryan, V.; Paleček, J. Asymmetric Synthesis of theα-D-Galactosyl Ceramide KRN7000 via an Organocatalytic Aldol Reaction as Key Step. Synthesis 2010, 2979-298.
    69. Wuts, P. G. M.; Greene, T. W. Greene’s Protective Groups in Organic Synthesis, 4th ed. John Wiley & Sons, Inc. 2007.
    70. Veerapen, N.; Brigl, M.; Garg, S.; Cerundolo, V.; Cox, L. R.;Brenner, M. B.; Besra, G. S. Synthesis and biological activity of α-galactosyl ceramide KRN7000 and galactosyl (α1-2) galactosyl ceramide Bioorg. Med. Chem. Lett. 2009, 19, 4288-4291.
    71. Mormeneo, D.; Casas, J.; Llebaria, A.; Delgado, A. Synthesis and preliminary antifungal evaluation of a library of phytosphingolipid analogues. Org. Biomol. Chem. 2007, 5, 3769-3777.
    72. Jervis, P. J.; Cox, L. R.; Besra, G. S. Synthesis of a Versatile Building Block for the Preparation of 6-N-Derivatized α-Galactosyl Ceramides: Rapid Access to Biologically Active Glycolipids. J. Org. Chem. 2011, 76, 320-323.
    73. Polt, R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V. J. General Methods for α- or β-O-Ser/Thr Glycosides and Glycopeptides. Solid-Phase Synthesis of 0-Glycosyl Cyclic Enkephalin Analogues. J. Am. Chem. Soc. 1992, 114, 10249-10258.
    74. Du, W.; Kulkarni, S. S.; Gervay-Hague, J. Efficient, one-pot syntheses of biologically active a-linked Glycolipids. Chem. Comm. 2007, 2336-2338.
    75. Alper, Phil B.; Hung , S. C.; Wong, C. H. Metal Catalyzed Diazo Transfer for the Synthesis of Azides From Amines. Tetrahedron Lett. 1996, 37, 6029-6032.
    76. Yan, R. B.; Yang, Fan.; Wu, Y.; Zhang, L. H.; Ye, X. S. An efficient and improved procedure for preparation of triflyl azide and application in catalytic diazotransfer reaction. Tetrahedron Lett. 2005, 46, 8993-8995.
    77. Titz, A.; Radic, Z.; Schwardt, O.; Ernst, B. A safe and convenient method for the preparation of triflyl azide, and its use in diazo transfer reactions to primary amines. Tetrahedron Lett. 2006, 47, 2383-2385.
    78. Brase, S.; Gil, C.; Knepper, K.; Zimmermann, V. Organic Azides: An Exploding Diversity of a Unique Class of Compounds. Angew. Chem. Int. Edit. 2005, 44, 5188-5240.
    79. Ndonye, R. M.; Izmirian, D. P.; Dunn, M. F.; Yu, K. O. A.; Porcelli, S. A.; Khurana, A.; Kronenberg, M.; Richardson, S. K.; Howell, A. R. Synthesis and Evaluation of Sphinganine Analogues of KRN7000 and OCH. J. Org. Chem. 2005, 70, 10260-10270.
    80. Toshima, K.; Tatsuta, K. Recent Progress In OGiycosylation Methods and Its Application to Natural Products Synthesis. Chem. Rev. 1993, 93, 1503-1531.
    81. Vermeer, H. J.; van Dijk, C. M.; Kamerling, J. P.; Vliegenthart, J. F. G. Fucosylation of Linear Alcohols: A Study of Parameters Influencing the Stereochemistry of Glycosylation. Eur. J. Org. Chem. 2001, 1, 193-203.
    82. Demchenko, A. V. Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. WILEY-VCH Verlag GmbH & Co. KGaA. 2008.
    83. Zhu, X. M.; Schmidt, R. R. New Principles for Glycoside-Bond Formation. Angew. Chem., Int. Edit. 2009, 48, 1900-1934.
    84. Lemieux, R. H.; Hendriks, K. B.; Sticks, R. V.; James, K. Halide ion catalyzed glycosidation reactions. Syntheses of α-Linked disaccharides. J. Am. Chem. Soc. 1975, 119, 4056-4062.
    85. Gervay-Hague, J.; Nguyen, T. N.; Hadd, M. J. Mechanistic studies on the stereoselective formation of glycosyl iodides: first characterization of β-D-glycosyl iodides. Carbohydr. Res. 1997, 300, 119-125.
    86. Chervin, S. M.; Abada, P.; Koreeda, M.; Convenient, in situ generation of anhydrous hydrogen iodide for the preparation of α-glycosyl iodides and vicinal iodohydrins and for the catalysis of ferrier glycosylation. Org. Lett. 2000, 2, 369-372.
    87. Lam, S. N.; Gervay-Hague, J. Solution- and solid-phase oligosaccharide synthesis using glucosyl iodides: a comparative study. Carbohydr. Res. 2002, 337, 1953-1965.
    88. Lam, S. N.; Gervay-Hague, J. Solution-Phase Hexasaccharide Synthesis Using Glucosyl Iodides. Org. Lett. 2002, 4, 2039-2042.
    89. Adinolfi, M.; Iadonisi, A.; Ravid, A.; Schiattarella, M. Efficient and direct synthesis of saccharidic 1,2-ethylidenes, orthoesters, and glycals from peracetylated sugars via the in situ generation of glycosyl iodides with I2/Et3SiH. Tetrahedron Lett. 2003, 44, 7863-7866.
    90. El-Badry, M. H.; Gervay-Hague, J. Thermal effect in β-selective glycosylation reactions using glycosyl iodides. Tetrahedron Lett. 2005, 46, 6727-6728.
    91. Lam, S. N.; Gervay-Hague, J. Glycal Scavenging in the Synthesis of Disaccharides Using Mannosyl Iodide Donors. J. Org. Chem. 2005, 70, 2387-2390.
    92. Du, W.; Gervay-Hague, J. Efficient synthesis of α-galactosyl ceramide analogues using glycosyl iodide donors. Org. Lett. 2005, 7, 2063-2065.
    93. Clique, B.; Ironmonger, A.; Whittaker, B.; Colley, J.; Titchmarsh, J.; Stockley, P.; Nelson, A. Synthesis of a library of stereo- and regiochemically diverse aminoglycoside derivatives. Org. Biomol. Chem. 2005, 3, 2776-2785.
    94. Montalbetti, C. A. G. N.; Falque, V. Amide bond formation and peptide coupling. Tetrahedron 2005, 61, 10827-10852.
    95. Glushkov, R. G.; L'vov, A. I.; Sizova, O. S.; Davydova, N. K.; Sanzharova, G. M.; Polyakova, M. Ya.; Balashova, I. A. A novel synthesis of gemfibrozil. Pharm. Chem. J. 1995, 29, 290–293.
    96. Greenberg, W. A.; Scott Priestley, E.; Sears, P. S.; Alper, P. B. Rosenbohm, C.; Hendrix, M. Hung, S. C.; Wong C. H. Design and Synthesis of New Aminoglycoside Antibiotics Containing Neamine as an Optimal Core Structure: Correlation of Antibiotic Activity with in Vitro Inhibition of Translation. J. Am. Chem. Soc. 1999, 121, 6527-6541.
    97. Tom Chang, C. W.; Hui, Y.; Elchert, B.; Wang, J.; Li, J.; Rai R. Pyranmycins, a Novel Class of Aminoglycosides with Improved Acid Stability: The SAR of D-Pyranoses on Ring III of Pyranmycin. Org. Lett. 2002, 4, 4603-4606.
    98. Clique, B.; Ironmonger, A.; Whittaker, B.; Colley, J.; Titchmarsh, J.; Stockley, P.; Nelson, A. Synthesis of a library of stereo- and regiochemically diverse aminoglycoside derivatives. Org. Biomol. Chem. 2005, 3, 2776-2785.
    99. Liu, Y.; Deng, S.; Bai, L.; Freigang, S.; Mattner, J.; Teyton, L.; Bendelac, A.; Savage, P. B. Synthesis of diglycosylceramides and evaluation of their iNKT cell stimulatory properties. Bioorg. Med. Chem. Lett. 2008, 18, 3052–3055.
    100. Brisco, R. D.; Ronchetti, F.; Mangoni A.; Costantino V.; Compostella, F. Development of a fluorescent probe for the study of the sponge-derived simplexide immunological properties. Carbohydr. Res. 2012, 348, 27–32.
    101. Arranz-Plaza, E.; Tracy, A. S.; Siriwardena, A.; Pierce, J. M.; Boons, G. J. High-Avidity, Low-Affinity Multivalent Interactions and the Block to Polyspermy in Xenopus laevis. J. Am. Chem. Soc. 2002, 124, 13035-13046.
    102. Iwata, R.; Sudo, M.; Nagafuji, K.; Wada, T. Synthesis of Oligodiaminosaccharides Having r-Glycoside Bonds and Their Interactions with Oligonucleotide Duplexes. J. Org. Chem. 2011, 76, 5895–5906.
    103. Diot, J. D.; Moreno, I. G.; Twigg, G.; Mellet, C. O.; Haupt, K.; Butters, T. D.; Kovensky, J.; Gouin, S. G. Amphiphilic 1-Deoxynojirimycin Derivatives through Click Strategies for Chemical Chaperoning in N370S Gaucher Cells. J. Org. Chem. 2011, 76, 7757–7768.
    104. Hung, S. C.; Lu, X. A.; Lee, J. C.; Chang, M. D. T.; Fang, S; Fan, T.; Zuluetaa, M. M. L.; Zhong, Y. Q. Synthesis of heparin oligosaccharides and their interaction with eosinophil-derived neurotoxin. Org. Biomol. Chem. 2012, 10, 760–772.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE