研究生: |
黃亭穎 Huang, Ting-Ying |
---|---|
論文名稱: |
適用於無線近身網路的低能耗雙模BCH軟式解碼器 An energy-efficient dual-mode soft-decision BCH decoder for wireless body area network |
指導教授: |
翁詠祿
Ueng, Yeong-Luh |
口試委員: |
張錫嘉
楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 無線近身網路 、BCH解碼器 、IEEE802.15.6 、軟式解碼器 、提早終止解碼 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文呈現一個相容於IEEE 802.15.6的軟式BCH解碼器,可應用於生醫系統中的無線近身網路,它有能量消耗的限制;相較於傳統的硬式解碼器,我們提出一個軟式解碼器,在相同資料鏈結強度下可以得到1 dB的增益,以節省傳輸端的能量消耗。我們提出的軟式BCH解碼器結合了演算法、硬體架構以及電路設計以降低電路面積和能量消耗,以達到最佳的效果;我們藉由一個提早終止解碼方法,用於減少多餘的測試向量,節省不必要的能量消耗,在較好的環境下,需要的解碼週期和硬式解碼器相當。在小值搜尋電路方面,我們提出機率式搜尋,相較於傳統的搜尋方法,可降低54.7%面積;硬式解碼核心部分的演算法是以彼得森速解法實作,相較於查表法,降低了44.2%面積;硬式解碼中需要用到的陳式搜尋電路經邏輯閘共用化簡後以開關邏輯電路客製化實作,佈局自行設計,相較於以傳統做法,可節省33.3%能量消耗;由以上方法,此晶片可操作在0.29V,此工作電壓使電路消耗最少的能量,相較於未簡化的的軟式解碼器,共減少了94%的能量消耗;晶片是以90nm製程實作,功率消耗5.4uW,若操作在500K赫茲下可達到6.38Mbps的吞吐量,符合IEEE 802.15.6的吞吐量要求,也符合了無線近身網路低能耗、低電路複雜度的限制。
[1] J. Y. Khan and M. R. Yuce, "Wireless body area network (WBAN) for medical applications," New Developments in Biomedical Engineering, Ch.13, InTech, 2010.
[2] A. Pantelopoulos and N. G. Bourbakis, "A survey on wearable sensor-based systems for health monitoring and prognosis," IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 40,no. 1, pp. 1-12, Jan. 2010.
[3] B. Latre, B. Braem, I. Moerman, C. Blondia, and P. Demeester, "A survey on wireless body area networks," Wireless Networks, vol. 17, no. 1, pp.1-18, Jan. 2011.
[4] S. B. Wicker, Error control systems for digital communication and storage,Englewood Clis, N. J. Prentice Hall, 1995.
[5] A. Hocquenghem, "Codes correcteurs d'erreurs," Chires, vol. 2, pp. 147-156, 1959.
[6] R. C. Bose and D. K. Ray-Chaudhuri, "On a class of error correcting binary group codes," Information Control, vol. 3, pp. 68-79, March 1960.
[7] C. C. Chu, Y. M. Lin, C. H. Yang, and H. C. Chang, "A fully parallel BCH codec with double error correcting capability for NOR flash applications," in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2012), pp. 1605-1608, Mar. 2012.
[8] W. Xueqiang, P. Liyang, W. Dong, H. Chaohong, and Z. Runde, "A high-speed two-cell BCH decoder for error correcting in MLC NOR flash memories," IEEE Trans. Circuits and Systems-II, vol. 56, no. 11, pp. 865-869, Nov. 2009.
[9] R. Naseer and J. Draper, "Parallel double error correcting code design to mitigate multi-bit upsets in SRAMs," in Proc. European Solid-State Circuits Conf. (ESSCIRC 2008), pp. 222-225, Sep. 2008.
[10] Y. M. Lin, H. C. Chang, and C. Y. Lee, "An improved soft BCH decoder with one extra error compensation," in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS 2010), pp. 3941-3944, May 2010.
[11] Y. M. Lin, C. L. Chen, H. C. Chang, and C. Y. Lee, "A 26.9 K 314.5 Mb/s soft (32400, 32208) BCH decoder chip for DVB-S2 system," IEEE J. Solid-State Circuits, vol. 45, no. 11, pp. 2330-2340, Nov. 2010.
[12] IEEE WPAN Task Group 6, http://www.ieee802.org/15/pub/TG6.html
[13] K. S. Kwak, S. Ullah, and N. Ullah, "An overview of IEEE 802.15.6 standard," in Proc. Int. Symp. Applied Sciences in Biomedical and Commun. Technologies (ISABEL 2010), pp. 1-6, Nov. 2010.
[14] S. Ullah and K. S. Kwak, "Throughput and delay limits of IEEE 802.15.6,"in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC 2011), pp. 174-178, March, 2011.
[15] D. Chase, "A class of algorithms for decoding block codes with channel measurement information," IEEE Trans. Inform. Theory, vol. 18, no. 1, pp. 170-182, Jan. 1972.
[16] J. Rabaey, Low Power Design Essentials, Springer, 2009.
[17] A. Wang and A. Chandrakasan, "180-mV subthreshold FFT processor using a minimum energy design methodology," IEEE J. Solid-State Circuits,vol. 40, no. 1, pp. 310-319, Sep. 2005.
[18] B. H. Calhoun, A. Wang, and A. Chandrakasan, "Modeling and sizing for minimum energy operation in subthreshold circuits," IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1778-1786, Sep. 2005.
[19] W. Zhang, X. Zhang, and H. Wang, "Increasing the energy eciency of WSNs using algebraic soft-decision reed-solomon decoders," in Proc. IEEE Asia Pacic Conf. Circuits and Systems (APCCAS 2012), pp. 49-52, Dec. 2012.
[20] G. T. Chen, L. Cao, L. Yu, and C. W. Chen, "Test-pattern-reduced decoding for turbo product codes with multi-error-correcting eBCH codes,"IEEE Trans. Commun., vol. 57, no. 2, pp. 307-310, 2009.
[21] W. W. Peterson and E. J. Weldon, Jr., Error-correction codes, 2nd ed.,Cambridge, MA, MIT Press, 1972.
[22] S. A. Hirst, B. Honary, and G. Markarian, "Fast Chase algorithm with an application in turbo decoding," IEEE Trans. Commun., vol. 49, no. 10,pp. 1693-1699, Oct. 2001.
[23] C. L. Wey, M. D. Shieh, and S. Y. Lin, "Algorithms of fnding the first two minimum values and their hardware implementation," IEEE Trans.Circuits and Systems-I, vol. 55, no. 11, pp. 3430-3437, Dec. 2008.
[24] R. G. Gallager, "Low-density parity-check codes," IRE Trans. Inf. Theory, vol. IT-8, no. 1, pp. 21-28, Jan. 1962.
[25] E. R. Berlecamp, Algebraic coding theory, 2nd ed., Laguna Hills, CA,Aegean Park Press, 1984.
[26] J. L. Massey, "Shift-register synthesis and BCH decoding," IEEE Trans. Infor. Theory, vol. 15, no. 1, pp. 122-127, January 1969.
[27] J. C. Lo, "A novel area-time ecient static CMOS totally self-checking comparator," IEEE J. Solid-State Circuits, vol. 28, no. 2, pp. 165-168,Feb. 1993.