研究生: |
黃超勇 Ng, Chow-Yong |
---|---|
論文名稱: |
多機器人動態任務分配及路徑尋找設計與實踐 Design and Implementation of Multi-Robot Dynamic Task Allocation and Pathfinding |
指導教授: |
陳榮順
Chen, Rongshun |
口試委員: |
白明憲
Bai, Ming-Sian 程登湖 Cheng, Teng-Hu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 動態任務分配及路徑尋找 、多機器人任務分配 、多機器人路徑尋找 、蟻群演算法 、基於衝突式路徑尋找演算法 |
外文關鍵詞: | DTAPF, MRTA, MAPF, ACO, CBS |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在任務順序及時間限制下,多機器人動態任務分配及路徑尋找問題是一個最佳化問題。本研究以貪婪演算法及蟻群演算法,做為任務分配的演算法,配合基於衝突式路徑尋找演算法為基礎,提出動態任務分配及路徑尋找的演算法架構。此架構可用於解決多機器人動態任務分配及路徑尋找問題。本研究提出一優先式的目標函數,將會優先完成任務的所得分數,再以最短所需的時間完成優先分配的任務。本研究所提出的演算法之架構,在預設的環境下執行模擬及實驗,並與單純的貪婪演算法作為比較,驗證所提方法的可行性。而結果表明此架構能優化既有的解決方法並且能夠處理動態環境的問題。
Under precedence and temporal constraints, dynamic task allocation and pathfinding for multi-robot system is to optimize an objective function by assigning tasks and plan paths for robots. In this thesis, a framework based on greedy search and ant colony optimization algorithm, a metaheuristic algorithm, is proposed to deal with the task allocation for multi-robot. Pathfinding is optimally solved through conflict-based search algorithm. With the priority-based objective function, the proposed framework first optimizes the utility of the tasks and then, the makespan of the overall system is optimized. Simulations and experiments are conducted and the results are compared with those from greedy-based algorithm to demonstrate the feasibility of the proposed framework.The results illustrate the improvement in the qualities of the solutions and the ability to handle dynamics in the environment.
[1] P. R. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of cooperative, autonomous vehicles in warehouses,” AI Mag., vol. 29, pp. 9–20, 2008.
[2] P. M. Kornatowski, A. Bhaskaran, G. M. Heitz, S. Mintchev, and D. Floreano, “Lastcentimeter personal drone delivery: Field deployment and user interaction,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3813– 3820, 2018.
[3] Cai Luo, A. P. Espinosa, D. Pranantha, and A. De Gloria, “Multirobot search and rescue team,” in 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 296–301, 2011.
[4] M. Koes, I. Nourbakhsh, and K. Sycara, “Heterogeneous multirobot coordination with spatial and temporal constraints,” AAAI’05, p. 1292–1297, AAAI Press, 2005.
[5] H. Ma and S. Koenig, “Optimal target assignment and path finding for teams of agents,” CoRR, vol. abs/1612.05693, 2016.
[6] C. Henkel, J. Abbenseth, and M. Toussaint, “An optimal algorithm to solve the combined task allocation and path finding problem,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4140– 4146, 2019.
[7] C. Landry, R. Henrion, D. Hömberg, M. Skutella, and W. Welz, “Task assignment, sequencing and pathplanning in robotic welding cells,” in 2013 18th International Conference on Methods Models in Automation Robotics (MMAR), pp. 252–257, 2013.
[8] K. Jose and D. K. Pratihar, “Task allocation and collisionfree path planning of centralized multirobots system for industrial plant inspection using heuristic methods,” Robotics and Autonomous Systems, vol. 80, pp. 34–42, 2016.
[9] E. A. Khamis A., Hussein A., “Multirobot task allocation: A review of the stateoftheart,” in Cooperative Robots and Sensor Networks 2015 (M.d. D. J. Koubâa A., ed.), vol. 604, Cham: Springer, 2015.
[10] N. Seenu, M. KuppanChettyR., M. RamyaM., and M. N. Janardhanan, “Review on stateoftheart dynamic task allocation strategies for multiple robot systems,” Ind. Robot, vol. 47, pp. 929–942, 2020.
[11] B. P. Gerkey and M. J. Matarić, “A formal analysis and taxonomy of task allocation in multirobot systems,” The International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.
[12] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task allocation problems with temporal and ordering constraints,” Robotics and Autonomous Systems, vol. 90, pp. 55–70, 2017. Special Issue on New Research Frontiers for Intelligent Autonomous Systems.
[13] A. Mosteo and L. Montano, “Simulated annealing for multirobot hierarchical task allocation with flexible constraints and objective functions,” in Workshop on Network Robot Systems: Toward Intelligent Robotic Systems Integrated with Environments, 01 2006.
[14] T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. S. Nau, D. Wu, and F. Yaman, “SHOP2: an HTN planning system,” CoRR, vol. abs/1106.4869, 2011.
[15] M. Badreldin, A. Hussein, and A. Khamis, “A comparative study between optimization and marketbased approaches to multirobot task allocation,” Adv. in Artif. Intell., vol. 2013, Jan. 2013.
[16] H. Mitiche, D. Boughaci, and M. Gini, “Efficient heuristics for a timeextended multirobot task allocation problem,” in 2015 First International Conference on New Technologies of Information and Communication (NTIC), pp. 1–6, 2015.
[17] A. Hussein and A. Khamis, “Marketbased approach to multirobot task allocation,” in 2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR), pp. 69–74, 2013.
[18] W. Wong and C. I. Ming, “A review on metaheuristic algorithms: Recent trends, benchmarking and applications,” in 2019 7th International Conference on Smart Computing Communications (ICSCC), pp. 1–5, 2019.
[19] J. Wang, Y. Gu, and X. Li, “Multirobot task allocation based on ant colony algorithm,” Journal of Computers, vol. 7, 09 2012.
[20] X. Li, Z. Liu, and F. Tan, “Multirobot task allocation based on cloud ant colony algorithm,” pp. 3–10, 10 2017.
[21] M. DORIGO, “Optimization, learning and natural algorithms,” PhD Thesis, Politecnico di Milano, 1992.
[22] T. Stützle and H. H. Hoos, “Max–min ant system,” Future Generation Computer Systems, vol. 16, no. 8, pp. 889–914, 2000.
[23] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.
[24] A. Kulatunga, D. Liu, G. Dissanayake, and S. Siyambalapitiya, “Ant colony optimization based simultaneous task allocation and path planning of autonomous vehicles,” pp. 1 – 6, 07 2006.
[25] J. Yu and S. LaValle, “Structure and intractability of optimal multirobot path planning on graphs,” in AAAI, 2013.
[26] G. Wagner and H. Choset, “M*: A complete multirobot path planning algorithm with performance bounds,” in 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3260–3267, 2011.
[27] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant, R. C. Holte, and
J. Schaeffer, “Enhanced partial expansion a*,” J. Artif. Int. Res., vol. 50, p. 141– 187, May 2014.
[28] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflictbased search for optimal multiagent pathfinding,” Artificial Intelligence, vol. 219, pp. 40 – 66, 2015.
[29] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin, and S. E. Shimony, “Icbs: The improved conflictbased search algorithm for multiagent pathfinding,” in SOCS, 2015.
[30] S. Choudhury, J. K. Gupta, M. J. Kochenderfer, D. Sadigh, and J. Bohg, “Dynamic multirobot task allocation under uncertainty and temporal constraints,” CoRR, vol. abs/2005.13109, 2020.
[31] F. Faruq, B. Lacerda, N. Hawes, and D. Parker, “Simultaneous task allocation and planning under uncertainty,” CoRR, vol. abs/1803.02906, 2018.
[32] B. Woosley and R. Dasgupta, “Multirobot task allocation with realtime path planning,” FLAIRS 2013 Proceedings of the 26th International Florida Artificial Intelligence Research Society Conference, pp. 574–579, 01 2013.
[33] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. T. Walker, J. Li,
D. Atzmon, L. Cohen, T. K. S. Kumar, E. Boyarski, and R. Barták, “Multiagent pathfinding: Definitions, variants, and benchmarks,” CoRR, vol. abs/1906.08291, 2019.
[34] D. Atzmon, A. Felner, R. Stern, G. Wagner, R. Barták, and N.F. Zhou, “k robust multiagent path finding,” in SOCS, 2017.
[35] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, “Path planning with modified a star algorithm for a mobile robot,” Procedia Engineering, vol. 96, pp. 59–69, 2014. Modelling of Mechanical and Mechatronic Systems.
[36] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Autonomous Agents). The MIT Press, 2005.
[37] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” Tech. Rep. CMURITR9201, Carnegie Mellon University, Pittsburgh, PA, January 1992.
[38] F. J. RomeroRamirez, R. MuñozSalinas, and R. MedinaCarnicer, “Speeded up detection of squared fiducial markers,” Image and Vision Computing, vol. 76, pp. 38–47, 2018.
[39] S. GarridoJurado, R. MuñozSalinas, F. MadridCuevas, and R. Medina Carnicer, “Generation of fiducial marker dictionaries using mixed integer linear programming,” Pattern Recognition, vol. 51, pp. 481–491, 2016.
[40] J. H. Shim and Y. I. Cho, “A mobile robot localization via indoor fixed remote surveillance cameras,” Sensors, vol. 16, 2016.
[41] A. LópezCerón and J. M. Canas, “Accuracy analysis of markerbased 3 d visual localization,” in XXXVII Jornadas de Automatica Workshop, 2016.
[42] J. Zheng, S. Bi, B. Cao, and D. Yang, “Visual localization of inspection robot using extended kalman filter and aruco markers,” in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 742–747, 2018.