簡易檢索 / 詳目顯示

研究生: 曾仕君
Shih-Chun Tseng
論文名稱: 電子束微影與電漿耦合化學氣相沈積法製作單根垂直奈米碳管與其場發射特性之研究
Fabrication single vertically-aligned CNT by using E-beam lithography and Inductively coupled plasma chemical vapor deposition and study the field emission characteristics
指導教授: 蔡春鴻
Chuen-horng Tsai
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 143
中文關鍵詞: 電子束微影電感耦合電漿單根垂直奈米碳管掃瞄探針顯微鏡三極結構元件
外文關鍵詞: Electron beam lithography, inductively coupled plasma, single vertically-aligned carbon nanotube, scanning probe microscopy, tridoe structure device
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,將從單根奈米碳管的成長、單根奈米碳管的場發射特性量測與分析以及利用單根碳管製作掃瞄探針顯微鏡與三極元件結構應用三個部分說明。
    第一:結合電子束微影技術與電感耦合電漿化學氣相沈積法製作單根垂直之奈米碳管。首先,將厚約35 nm的正電子阻塗佈在p-type基板上並利用電子束微影技術製做出三種不同間距(1 μm,2 μm,與3 μm)的孔洞,電子束微影使用的加速電壓為20 KV以及分別利用5 ms到10 ms 的曝光時間來控制孔洞的直徑 ,其孔洞直徑最小可達約30 nm,平均直徑約為60 nm,接著,利用電子束蒸鍍或濺鍍(sputter)方式沈積厚度為10 nm 的鎳催化金屬,最後使用電感耦合電漿化學氣相沈積法成長單根垂直奈米碳管,成長條件如下:ICP功率1000瓦、基板射頻偏壓300瓦、通入氣體C2H2/H2/Ar with 8/24/0.5 sccm、成長壓力20 mtorr、成長溫度550度以及成長時間為10分鐘。為了瞭解不同形狀的奈米碳管對於場發射特性的差異,因此,分別使用兩種不同大小尺寸(24公分4公分)與結構的石墨電極基板,分別成長出單根垂直管狀以及錐狀之奈米碳管。此外,控制電子束在光阻上停留的時間,製作出不同直徑大小的圓形鎳催化金屬點並利用電感耦合電漿化學氣相沈積法成長碳管,發現碳管的高度與直徑會與電子束停留時間有正比的微妙關係。
    第二:為了研究不同形狀以及不同深寬比之單根垂直奈米碳管場發射特性,我們設計與製作一組在掃瞄式電子顯微鏡腔體中使用的三軸移動元件局部場發射系統(不同深寬比之單根碳管製作在第一部份已有說明),此元件系統包括兩個部分:x與y軸的慣性移動器以及z軸的inchworm,x與y載臺移動是壓電控制且不會互相影響,x與y軸的移動範圍為25 mm × 25 mm,另外,z軸的移動範圍為48 mm × 20 mm.。經過實驗結果發現,隨著曝光時間的增加碳管的高度與直徑也將隨之增加(較大的鎳催化金屬點其碳管的成長速率將愈大),這是由於較大的鎳催化金屬點周圍會有較多的碳源包覆。在場發射特性量測結果中發現,深寬比較高的碳管其起使電壓也較低,這是由於場增強因子會隨著碳管的深寬比增加而遞增。此外在模擬部分,我們利用模擬軟體SIMION 7.0配合實驗上的各項條件分別不同深寬比之碳管做場強模擬,SIMION模擬條件如下:陽極探針半徑為3 μm、陰極與陽極間距離為200 nm以及陽極探針電壓為 24伏特。其結果亦證明深寬比最大之碳管其場增強因子與起始電場最大。
    最後:我們利用純熟的電子束微影技術以及電感耦合電漿化學氣相沈積法,成功的製作出以單根垂直管狀奈米碳管作為掃瞄探針顯微鏡與三極結構元件之電子源的應用。在掃瞄探針顯微鏡實驗結果中,我們成功的利用碳管為電子源掃瞄矽柱陣列高度與邊長分別為150 nm與1.25 ~1.5 μm的結構;在三極結構元件中,影響場發射特性的因子有許多,諸如:閘極孔洞直徑大小、碳管的幾何形狀、碳管在閘極孔洞中的相對位置以及閘極層的厚度…等等,但在本實驗中,主要是探討碳管的幾何形狀(深寬比),因此,將閘極孔洞直徑大小、碳管在閘極孔洞中的相對位置以及閘極層的厚度的變因固定,然而在各種不同的深寬比中,其頂部的曲率變化不大(可視為相同),故我們針對不同的碳管高度作其場發射特性的探討。結果顯示在接近閘極高度的碳管,其場發射特性是最佳的。除此之外,我們利用模擬軟體SIMION 7.0配合實驗上的各項條件分別對各種不同高度碳管做場強模擬,其條件如下: 閘極孔洞與陽極探針直徑分別為1.5 μm and 4 μm、外加閘極與陽極電壓分別為-10伏特與0 伏特、以及陰極外加電壓-27.7 伏特。其結果亦證明碳管高度在接近閘極時場強最大。根據上述結果顯示,在三極結構的場發射量測中,儘管影響場強特性主要是控制碳管的高度,但場強的不同並非只簡單來自於深寬比,碳管頂端到閘極高度得間距也是影響之一。
    本論文所探討的場發射特性與其應用,雖然只是奈米碳管世界中的微小部分,但是,相信已經將奈米碳管應用的觸角往外延伸;雖然仍有許多需要更進一步往下探討的地方,但是,已經勾畫出一個實際應用的基礎架構,也對未來奈米碳管的應用提出可行的研究方向。


    In this thesis, we will separate three parts: first: introduce the growth of single vertically-aligned carbon nanotube (CNT), secondly: field emission measurement and analysis with various shape of single CNT, and finally: the application of scanning probe microscopy and triode structure device with single CNT.
    First, the vertically aligned CNTs were fabricated by a combination of EBL and ICP-CVD deposition. The positive photoresist of polymethylmehtacrylate (PMMA) 35 nm thickness was coated on a <100> p-type silicon substrate, followed by EBL. The spacing between dots were 1~3 μm apart. The acceleration voltage was 20 KV, and the exposure time was varied between 5 ms and 10 ms to control the size of holes after development.The minimum and average sizes of the nickel dots after lift-off ranged were 30 nm and 60 nm, respectively. Nickel, as the catalyst, was then deposited either by E-gun evaporation or radio frequency sputter, which thickness was about 10 nm. An ICP-CVD system was used to grow vertically aligned CNTs under the following process conditions: ICP power of 1000 W, substrate RF bias of 300 W, feed gas mixture of C2H2/H2/Ar with 8/24/0.5 sccm flow rates, and total pressure of 20 mtorr. The substrate temperature was about 550o C and the growth time was 10 minutes. To separate the field emission characteristics with various shape of CNT, two different types (24 cm and 4cm) of graphite electrodes supporting silicon substrates were used. In additionally, the aspect ratio of CNT is directly proportional to the exposure time of electron beam after using EBL and ICP-CVD.
    Secondly, we have designed and constructed the three-axis nano-positioning device for carbon nano-tip assembly and FE measurement inside a SEM chamber in order to investigate the field emission characteristics with various shape and aspect ratio of single CNT (Free standing VACNTs of various aspect ratios (height/radius) were explained at first part). This device consists of two parts: inertial walker for x-y-axis and inchworm unit for the z-axis. The x and y stages are independent and actuated with piezoelectric stack respectively. The dimension of the x-y stage is 25 mm × 25 mm. The dimension of the inchworm is 48 mm × 20 mm. Based on the results of experiment, it clearly shows that the lengths and diameters of CNT are varied with the exposure times (the larger the Ni dot size, the large the CNT diameter and the faster the CNT growth rate). It was believed that the increasing growth rate for larger Ni dot size is attributed to the increasing carbon flux around Ni. The large height and small radius of CNT lead to high aspect ratios and thus better enhancement of the electric field at the tip. That means required turn-on electric filed is substantially reduced as the height increases or radius is decreases due to the increased geometrical field enhancement factor. Furthermore, the turn-on field was also showed a result of FE simulation at the apex of the CNT emitter with various aspect ratio by using a commercial code, SIMION 7.0.The SIMION code simulation conditions are: (1) diameter of anode probe of 3 μm,(2) spacing between anode and cathode 200 nm, and (3) anode voltage 24 V. The results were also showed that the maximum field enhancement factor and field strength was related to the aspect ratio.
    Finally, we have constructed the scanning probe microscopy and triode structure device with single vertically-aligned CNT emitter source by using electron beam lithography and inductively-couple plasma (ICP) chemical vapor deposition. In the scanning probe microscopy measurement part, it was apparent that the silicon pillar array with height 150 nm and length 1.25~1.5 μm have been completely scanning by the single CNT probe. In the triode measurement, the field emission was the synthesized effect of the gate structure; in other words, in addition to the geometric factor of CNTs, the field strength at the CNT apex in triode structure also depends on the gate hole size, position of CNT at gate hole, and the height of CNT tip relative to the gate height (gate-to-cathode spacing). In this study, the gate hole size, gate-to-cathode spacing, and the position of CNT were fixed (i.e. CNT is positioned at gate hole center). Thus the emphasis was on the effect of CNT length and the consequent difference of CNT tip to gate distance. It was evident that the optimized CNT height for highest field at the CNT apex is that equal to the gate-to-cathode spacing. Furthermore, the turn-on field was also showed a result of FE simulation at the apex of the CNT emitter with various CNT heights by using a commercial code, SIMION 7.0. The simulation conditions are: (1) diameter of aperture hole and anode probe of 1.5 μm and 4 μm respectively, (2) applied gate voltage -10 V and anode voltage 0 V, and (3) cathode voltage -27.7 V. The results were also showed that the maximum field strength was related to the CNT length. Based on the above results, it was evident that in the triode measurement, although the difference of field emission is “controlled” by varying the “CNT length”, the difference is not simply due to the aspect ratio, but also due to the difference in distance between CNT tip height and gate height.

    第一章 序論……………………………………1 1.1奈米碳管的歷史…………………………………1 1.1.1 奈米碳管的發展歷程………………………3 1.2奈米碳管的結構………………………………6 1.3奈米碳管的特性與應用………………………8 1.4研究動機與目的………………………………10 參考文獻……………………………………………14 第二章 文獻回顧……………………………15 2.1電子束微影技術………………………………15 2.1.1 電子阻………………………………………17 2.1.2 電子束微影系統介紹………………………19 2.1.3 鄰近效應……………………………………23 2.1.4電子束之數值計算(Monte Carlo method)………26 2.2 場發射理論背景……………………………………33 2.2.1 碳管結構場發射特性……………………………33 2.2.2 FOWLER-NORDHEIM 方程式………………………34 2.2.3 FOWLER-NORDHEIM 方程式應用在奈米碳管場發射......38 2.2.4 奈米碳管之場發射特性探討………………………………40 2.3奈米碳管成長機制探討………………………………………v49 2.3.1 成長方法與動態機制模擬…………………………………50 2.3.2 成長機制……………………………………………………55 2.4 奈米碳管場發射電子源的應用………………………………63 2.4.1 平面顯示器…………………………………………………63 2.4.2 微電子槍源(microgun)……………………………………65 2.4.3 原子力顯微鏡………………………………………………69 參考文獻…………………………………………………………71 第三章 研究方法……………………………………………74 3.1電子束微影…………………………………………74 3.1.1 樣品準備…………………………………75 3.1.2 點陣結構製作……………………………76 3.2電感耦合電漿化學氣相沉積成長奈米碳管………77 3.2.1 電感耦合電漿源的基本原理……………………………77 3.2.2 電感耦合電漿源的系統設備……………………………81 3.3 局部場發射量測…………………………………83 3.3.1 探針的製備………………………………………………83 3.3.2 量測系統…………………………………………………84 參考文獻……………………………………86 第四章 實驗結果與分析…………………………………87 4.1 電子束微影的製程 ……………………………87 4.1.1 點陣結構定位與鎳催化劑尺寸設計……………………87 4.1.2 電子束劑量與鎳催化劑關係……………………………90 4.2 單根奈米碳管成長製程……………………………………92 4.2.1在矽基板上成長單根垂直奈米碳管………………………92 4.3 單根碳管應用在原子力顯微鏡與三極結構元件的製成…96 4.3.1 懸臂結構中成長單根垂直奈米碳管……………………96 4.3.2 三極結構中成長單根垂直奈米碳管……………………101 4.4 單根碳管之場發射特性……………………………………106 4.4.1 陽極碳針尺寸對場發射特性的影響…………………..106 4.4.2 不同形狀之單根場發射結果……………………………109 4.4.3 不同深寬比(aspect ratios)之單根碳管場發射結果…116 4.5 單根碳管應用在掃瞄探針顯微鏡與三極結構元件之場發射結果.....................................................121 4.5.1 單根碳管應用在掃瞄探針顯微鏡……………………………121 4.5.2 單根碳管在三極結構中之場發射結果………………………123 4.6 比較單根碳管在二極與三極結構中之場發射結果……………131 參考文獻………………………………………………………134 第五章 總結與未來展望……………………………………………135 5.1 總結 ……………………………………………………135 5.2 未來展望…………………………………………………137 參考文獻…………………………………………143

    [1.1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354(1991),56-58.
    H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl and R. E. Smalley, “C60:Buckminsterfullerene”, Nature 318(1985),162.
    [1.2] W. Kratschmer, L. D. Lamb, K. Fostiropoulos and D. R. Huffman, “Solid C60:a new form of carbon”, Nature 347(1990), 354.
    [1.3] A. Maiti, C. J. Brabec, C. Roland, and J. Bernholc, “Theory of carbon nanotube growth”, Phys. Rev. B 52(1995),14850.
    [1.4] S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature 363(1993),603.
    [1.5] D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. Saroy, J. Vazguez, and R.Beyers,“Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls”, Nature 363(1993), 605.
    [1.6] C. Kim, et al., Phys. Rev. B 65,(2002)165418.
    [1.7] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon 33(1995),883.
    [1.8] J. C. Charlier and J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes”, Applied Physics A:Materials Science & Processing 67(1998), 79.
    [1.9] M. D. Haus, G. Dresselhaus, P. Eklund, and R. Saito, “Carbon nanotubes”, Physics World, January, 33 (1998).
    [1.10] J. W. Mintmire and C. T. White, “First-principles band structures of armchair nanotubes”, Applied Physics A: Materials Science & Processing 67(1998), 65.
    [1.11] S. C. Tseng et al., Journal of Physical: Conference Series, 10(2005),186.
    [1.12] H. M. Cheng, Q. H. Yang, C. Liu, et al., Carbon. 39(2001),1447
    [2.1] L. F. Thompson, C. G. Willson, and M. J. Bowden, “Introduction to microlithography ”American Chemical Society, 1994.
    [2.2] 陳偉德,”電子束微影系統的裝置及電子元件的製作”,國立台灣大學物理研究所碩士論文,1998.
    [2.3] K. Murata, D. F. Kyser, and C. H. Ting, J . Appl. Phys.,52(1981), 4396.
    [2.4 ] N. Samoto and R. Shimizu, J. Appl. Phys.,54 (1983), 3855
    [2.5] W.Zhu, C. Bower, G. P. Kochansil, S. Jin, Diamond Rel. Mater,10(2001), 1709-1713
    [2.6] Robert Gomer, ”Field Emission And Field Ionization ”(1993)
    [2.7] Richard G. Forbes, Ultramicroscopy ,79(1999),11-23
    [2.8] R. G.ao, Z. Pan, and Z. L. Wang, Appl. Phys. Lett.,78(2001),1757.
    [2.9] A. V. Karabuto, V. D. Frolov, V. I. Konov, Diamond Rel. Mater,10(2001), 840-846
    [2.10] O. M. Kuttel, O. Groning, C. Emmenegger, L. Nilsson E. Maillard, L. Diederich, and L. Schlapbach, Carbon,37(1999),745-752.
    [2.11] J. M. Bonard, J. P. Salvetat, T. Stockli, L. Forr, A. Chatelain, Appl. Phys. A, 69 (1999) 245-254.
    [2.12] T. Utsumi, IEEE Trans, Electron Dev., 38(1991), 2276.
    [2.13] J. M. Bonard, H. Kind, T. Stockli, L. O. Nilsson, Solid State Electtonics, 2586 (2001),1-22
    [2.14] L. Nilsson, O. Groening, C. Emmenegger, O. Kuttel, E. Schaller, and L. Schlapbach, Appl. Phys. Lett,76(2000),2071-2073
    [2.15] Y. Tong, C. Liu, P. X. Hou, H. M. Cheng, N. S. Xu, and J. Chen, Phys. B, 233(2002),156-157
    [2.16] A. G. Rinzler, J. H. Hagner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, R. E. Smalley, Science, 269(1995)1550.
    [2.17] W. I. Milne, K. B. K. Teo, M. Chhowalla…etc, Diamond Relat. Mater. 12(2003),422.
    [2.18] V. Semet, V. T. Binh, P. Vincent and D. Guillot, Appl. Phys. Lett, 81(2002),343-345
    [2.19] L. R. Baylor, V. I. Merkulov, E.D. Ellils, M. A. Guillorn, D. H. Lowndes, A. V. Melechko, M.L.Simpson, and J.H.Whealton, J. Appl. Phys.,91(2002),4602-4606
    [2.20] V. I. Meerkulov, M. A. Guillorn, D. H. Lowndes, M. L. Simpson, and E. Voelkl, Appl. Phys. Lett, 78(2001),3127-3129.
    [2.21] V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett, 79(2001),1178-1180.
    [2.22] W. Zhu, C. Bower, G.. P. Kochanski, S. jun, Solid State Electronics, 45(2001),921.
    [2.23] Y. Saito, S. Uemura, Carbon,38(2000),169-182
    [2.24] J. M. Bonard, H. Kind, T. Stockli, L. O. Nilsson, Solid State Electronics,2586 (2001),1-22
    [2.25] J. Bernhoic, C. Brabec, M. Buongiorno, A. Maiti, C. Roland and B. I. Yakobson, Appl. Phys. A-Mater, 67(1998),39-46
    [2.26] M.Kusunoki, T. Suzuki, T. Hirayama and N. Shibata, Appl. Phys. Lett, 77(2000), 531
    [2.27] H. Wantanabe, Y. Hisada, S. Mukainakano and N. Tanaka, J. Microscopy, 203 (2001),40-46
    [2.28] Y. C. Choi, D. W. Kim, T. J. Lee, and Y. H. Lee, Synthetic Metals, 117(2001), 81-86
    [2.29] W. Li, S. XIE, W. Liu, R. Zhao, Y. Zhang, W. Zhou, G.. Wang, and L. Qian, J. Mate. Scie, 34(1999),2745-2749
    [2.30] J. Lee and J. Park, Appl. Phys. Lett, 77(2000),3397-3399
    [2.31] V. I. Merkulovm, A. V. Melechko, M. A. Guillorn, and D. H. Lowndes, Appl. Phys. Lett, 79(2001),2970-2972
    [2.32] S. H. Tsai, C. W. Chao, C. L. Lee and H. C. Shih, Appl. Phys. Lett, 74(1999),3462-2464
    [2.33] N. S. Lee, D. S. Chung, Y. W. Jin W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H. You, S. H. Jo, C. G. Lee, and J. M. Kim, Diam. Rela. Mate.,10(2001)265.
    [2.34] W.I. Milne, K. B. K. Teo, M. Chhowalla, G. A.J. Amaratunga, S. B. Lee…etc, Diamond Relat. Mater.12(2003),422-428.
    [2.35] M. A. Guillorn, A. V. Melechko, V. I. Merkulov, E. D. Ellis, C. L. Britton, M. L. Simpson, and D. H. Lowndes, Appl. Phys. Lett., 79(2001),3056-3058.
    [2.36] W.I. Milne, K. B. K. Teo, M. Chhowalla, G. A.J. Amaratunga, S. B. Lee…etc, J. Mater. Chem., 14(2004),1-12.
    [2.37] G.. Pirio, P. Legagneux, D. Pribat, K. B. K. Teo, M. Chhowalla, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology, 13(2002), 1-4.
    [2.38] I. Tanaka, I. Kamiya, H. Sakaki, N. Qureshi, S. J. Allen, Jr. and P. M.Petro.: Appl. Phys. Lett. 74 (1999) 844.
    [2.39] I. Tanaka, I. Kamiya and H. Sakaki: J. Cryst. Growth 201/202 (1999)1194.
    [2.40] I. Kamiya, I. Tanaka, K. Tanaka, F. Yamada, Y. Shinozuka and H. Sakaki: Physica E 13 (2002) 131.
    [3.1] 魏銘德,國立清華大學 工程與系統科學系碩士論文。(中華民國九十三年)
    [3.2] M. Meyyappan et al, Plasma Sources Sci. Technol.,12(2003),205.
    [4.1] V. I. Merkulov, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett.,79 (2001),1178-1120.
    [4.2] C. H. Weng, Y. Y. Lin, C. H. Tung, H. W. Wei, K. C. Leou, and C. H. Tsai, Appl. Phys. Lett. 85, (2004) 4732.
    [4.3] W. Zhu, C. Bower, G. P. Kochanski, and S. Jin, Diamond Relat. Mater., 10(2001),1709-1713
    [4.4] W. Zhu. et.al. Appl. Phys. Lett. 75(1999), 873.
    [4.5] J-M Bonard, M. Croci, I. Arfaoui, O. Noury, D. Sarangi, and A. Chatelain, Diamond Relat. Mater. 11(2002),763-768.
    [4.6] W. I. Milne, K. B. K. Teo, G. A. J. Amaratunga, P. Legagneux, L. G.angloff, J-P. Schnell, V. Semet, V. Thien, and O. Grorning, J. Mater. Chem., 14(2004),-12.
    [4.7] C. J. Edgcombe, and U. Valdre, J. Microscopy, 203(2000), 188-194.
    [4.8] V. Semet et al., Appl. Phys. Lett. 81(2002),343
    [4.9] L. Nilsson et al. J. Appl.Phys. 90(2001),768
    [4.10] D. Nicolaescu, L. D. Filip, S. Kanemaru, and J. Itoh, Japanese J. Appl. Phys. 43 (2004),485-491
    [4.11] John Cumings, A. Zettl, M. R. McCarteny, J. C. H. Spence, Phys. Rev. Lett., 88(2002),056804-1~056804-4.
    [5.1] John Cumings and A. Zettl, Phys. Rev. Lett., 88(2002), 056804-1
    [5.2] Dan NICOLAESCU, Lucian Dragos FILIP1, Seigo KANEMARU and Junji ITOH, Japanese Journal of Applied Physics, 43(2004),485
    [5.3] D. Nicolaescu, V. Filip, S. Kanemaru and J. Itoh: J. Vac. Sci. Technol.B 21 (2003) 366.
    [5.4] D. Nicolaescu: J. Vac. Sci. Technol. B 13 (1995) 531.
    [5.5] Dan NICOLAESCU_, Lucian Dragos FILIP1, Seigo KANEMARU and Junji ITOH, Japanese Journal of Applied Physics, 43(2004),3328.
    [5.6] M. A. Guillorn, X. Yang, A. V. Melechko, D. K. Hensley, M. D. Hale, V. I. Merkulov, and M. L. Simpsonb, J. Vac. Sci. Technol. B 22( 2004), 35.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE