簡易檢索 / 詳目顯示

研究生: 黃柏鈞
Huang, Po-Chun
論文名稱: Existence Results in The Cathode Catalyst Layer of 1D Models of PEM Fuel Cells
指導教授: 陳樹杰
Chern, Shuh-Jye
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 74
中文關鍵詞: 質子交換膜燃料電池
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    這篇論文引入V.Gurau, H.Liu, T.Zhou等人的物理模型,簡化至兩個一維模型。我們的探討侷限在質子交換膜燃料電池的觸煤層內解的存在問題,其數學模型為兩個常微分方程系統的邊界值問題。
    關於第一個模型我們透過Green’s functions、積分方程及Leray-Schauder固定點的理論證明了古典解的存在。對於第二個模型我們利用偏微分方程的線性理論和先驗估計建構一個疊代然後利用Schauder 固定點定理得到弱解的存在。
    另外我們利用Giaquinta 和 Modica的方法得到第二個模型的拋物型方程模擬的一個局部解。


    Abstract

    In this thesis we discuss the existence of a solution in the cathode catalyst layer of some 1D models of PEM fuel cells. The first model is governed by the equations

    T′′-f(T)Φ′ = 0
    (f(T)Φ′)′+g(T)Y = 0 , x∈(a,b)
    Y′′-h(T)Y = 0,

    with the boundary condition

    μ₁T(a)-μ₂T′(a) = 1,T′(b)=0
    α₁Y(a)-α₂Y′(a) = 1,Y′(b)=0
    Φ(b)+βf(T(b))⋅Φ′(b) = 0,Φ′(a)=0,

    where μ₁, μ₂, α₁, α₂ are positive constants and β>0, and x ∈(a,b). Assume f,g,h∈C_{b}¹(R), k∈C_{b}¹(R),and f≥δ₁>0, h≥δ₂>0.
    The second model is governed by the equations

    T′′-k(T)+λf(T)(Φ′)² = 0
    (f(T)Φ′)+g(T)Y = 0
    Y′′-h(T)Y = 0,

    with the boundary condition

    μ₁T(a)-μ₂T′(a) = 1, T′(b)=0
    Φ(b)+βf(T(b))⋅Φ′(b) = 0, Φ′(a)=0
    α₁Y(a)-α₂Y′(a) = 1, Y′(b)=0,

    where μ₁, μ₂, α₁, α₂ are positive constants and β>0, and for x ∈ (a,b). Assume f,g,h∈C_{b}¹(R), k∈C_{b}¹(R),and f≥δ₁>0, h≥δ₂>0.
    For the first model, we use Green's functions to rewrite the problem into an integral equation, then we apply the Leray-Schauder fixed point theorem to show the existence of a classical solution for the first model. For the second model, we use the linear theory to construct an iteration process, and apply the Schauder fixed point theorem to show the existence of a weak solution for the second model.
    We also prove a local existence result for a parabolic analogy of the second model by applying Banch contraction principle (Following Giaquinta and Modica).

    Contents 1 Introduction 1 2 Modeling of PEM Fuel Cells 3 2.1 Modeling of The Transport Phenomena in Catalyst Layers . . . . . . . . . . . . . . 4 2.2 Reduction to One-dimensional Models . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Existence in Model I 13 3.1 Formulation of a Fixed Point Problem . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Compactness and Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 The Boundary Value Problem for The Membrane Layer . . . . . . . . . . . . . . . 21 4 Existence in Model II 23 4.1 A Linear Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 An H1 Estimate of The Linear Problem . . . . . . . . . . . . . . . . . . . . . . . . 29 4.3 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5 A Mathematical Parabolic Problem 45 5.1 Two Energy Estimates for Linear Problems . . . . . . . . . . . . . . . . . . . . . . 48 5.2 Schauder Type Estimates for Linear Problems . . . . . . . . . . . . . . . . . . . . . 53 5.3 The Proofs of Theorem 5.4 and Theorem 5.5: . . . . . . . . . . . . . . . . . . . . . 56 5.4 A Local Existence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Final Remarks 71 References

    References
    [1] Adams, R. A. Sobolev Spaces, Academic Press, 1975.
    [2] Chen, Y. Z. and Wu, L. C., Second Order Elliptic Equations and Elliptic Systems, American
    Mathematical Society Providence, Rhode Island, 1998.
    [3] Chen, Y. Z., Second Order Differential Equations of Parabolic Type, Peking University Press,
    2002.
    [4] Evans, L. C., Partial Differential Equations, American Mathematical Society, Providence,
    Rhode Island,. 1999.
    [5] Fuller, T. F., and Newman, J., Water and Thermal Management in Solid-Polymer-Electrolyte
    Fuel-Cells, J. Electrochem. Soc., 140(5), (1993), pp1218-1225.
    [6] Giaquinta, M., Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems,
    Princeton University Press, Princeton, New Jersey 1983.
    [7] Giaquinta, M. and Modica, G., Local Existence for Quasilinear Parabolic Systems under
    Nonlinear Boundary Conditions, Annali di Matematica Pura ed Applicata, 1987.
    [8] Gilbarg, D. and Trudinger, N. S. Elliptic Partial Differential Equations of Second Order, 2nd
    ed., Springer-Verlag, 1983.
    [9] V. Gurau, F. Barbir, H. Liu, An analytic solution of a half-cell model for PEM fuel cells,
    Journal of The Electrochemical Society, 147 (2000) 2468-2477.
    [10] V. Gurau, H. Liu, S. Kakac, Two-dimensional model for proton exchange membrane fuel
    cells, AIChE Journal 44 (1998) 2410-2422.
    [11] Ladyzenskaya, O. A., Solonnikov, V. A. and Uralceva, N. N., Linear and Quasi-linear Equations
    of Parabolic type, American Mathematical Society, Providence, Rhode Island,. 1968.
    [12] Ladyzenskaya, O. A. and Uralceva, N. N., Linear and Quasilinear Elliptic Equations, Academic
    Press New York and London 1968.
    72

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE