簡易檢索 / 詳目顯示

研究生: 嚴昱翔
Yen, Paul Yu-Hsiang
論文名稱: 表面催化合成反應
On-Surface Synthesis
指導教授: 霍夫曼
Germar, Hoffmann
口試委員: 唐述中
Tang, Shu-Jung
關肇正
Kuan, Chao Cheng
顏宏儒
Yen, Hung Ju
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 116
中文關鍵詞: 表面物理分子自組裝薄膜表面合成掃描穿隧式電子顯微鏡凝態物理分子半導體
外文關鍵詞: STM, surface synthesis, self-assembly, organic electronics, ullmann coupling, metal coordination
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統半導體設計已經逼近物理極限,並且在原子尺度上的精確設計上面臨許多的挑戰。由分子及原子蒸鍍在基板上自下而上的方式提供了製造更小元件的可能性。從分子建構單元生長二維材料表面是最近熱門的領域。分子電子元件的發展取決於我們對局域性的物理化學機制了解以及調控及合成鍵合的開發。在此篇論文中,掃描穿隧式顯微鏡技術被應用在探討分子表面自組裝, 表面催化共價耦合跟有機金屬鍵的系統上。延展Pi電子網絡對於物理、化學、材料、元件製造上都是很有趣的課題。在此,我們給出了各類新合成Pi電子網絡分子在不同基板系統中的結果。


    Traditional semiconductor structure fabricated by top-down approach are reaching
    intrinsic physical limits. A Bottom-up approach through the deposition of
    atoms, molecules provides the prospects of smaller device designs. The synthesis
    of extended but atomically defined nanostructures from molecular building
    blocks in the vicinity of a two-dimensional surface is a strongly emerging field of
    research. Progress towards single-molecule electronics relies on a thorough understanding
    of local physio-chemical processes and development of synthetic route for
    controlled hetero-coupling. In this thesis, STM (Scanning Tunneling Microscopy)
    is used to study the growth behavior of molecular self-assembly, surface-assited
    coupling reactions and metal-organic formation on metallic surfaces. Extended -
    electron molecular networks are of much interest in chemistry, physics, materials
    science and device application. Here, the result of a multitude of newly synthesized
    molecules are presented.

    1 Overview of Scanning Tunneling Microscope 4 1.1 Theory and Working Principle . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Quantum tunneling in a one dimensional system . . . . . . . 6 1.1.2 Bardeen’s tunneling theory . . . . . . . . . . . . . . . . . . . 7 1.1.3 Tersoff-Hamann model[2] . . . . . . . . . . . . . . . . . . . . 11 1.2 Experimental Apparatus . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.1 Overview of experimental setup . . . . . . . . . . . . . . . . 12 1.2.2 Ultra-High Vacuum . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Liquid nitrogen temperature . . . . . . . . . . . . . . . . . . 16 1.2.4 Sample storage and transfer . . . . . . . . . . . . . . . . . . 17 1.2.5 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . 17 1.2.6 Scanning Tunneling Microscopy . . . . . . . . . . . . . . . . 19 2  Conjagated Systems: Phenacene Assemblies 22 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 Unsubstituted Phenacenes: General Growth Behavior . . . . 31 2.3.3 Monolayer Coverage - Unsubstituted Phenacenes . . . . . . 33 2.3.4 Monolayer Coverage - substituted Phenacenes . . . . . . . . 34 2.3.5 Bilayer Growth . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3.6 Electronic structure: STS on second monolayer . . . . . . . 40 3 Surface Assisted Coupling 47 3.1 PAL molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 PAL on Ag(100) . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 PAL on Au(111) . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 2Br-PIC(2-Br-[5]phenacene) . . . . . . . . . . . . . . . . . . . . . . 54 3.2.1 2,2’-BiPicenyl through On-Surface Synthesis . . . . . . . . . 54 3.2.2 2,2’-BiPicenyl from Molecular Powder . . . . . . . . . . . . . 57 3.3 4Br-PIC(4-Br-[5]phenacene) . . . . . . . . . . . . . . . . . . . . . . 59 3.3.1 4Br-PIC on Au(111) . . . . . . . . . . . . . . . . . . . . . . 60 3.3.2 Structure evolution with temperature . . . . . . . . . . . . . 61 3.3.3 Electronic properties with structure . . . . . . . . . . . . . . 65 3.3.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . 69 3.3.5 Supplement 1: Overview of presented data . . . . . . . . . . 70 3.3.6 Supplement 2: Structural Evolution of molecular system with temperature as recorded in LEED . . . . . . . . . . . . 71 3.3.7 Supplement 3: Sample and Film Preparation. . . . . . . . . 73 3.3.8 Supplement 4: STM and STS parameters . . . . . . . . . . . 75 3.3.9 Supplement 5: FFT-STM - Technical Notes . . . . . . . . . 75 3.3.10 Supplement 6: Extended Experimental Results . . . . . . . . 76 3.3.11 Supplement 7: Synchrotron Setup . . . . . . . . . . . . . . . 77 3.4 3,10-Bis(bromo)picene vs. 3,10-Bis(bromomethyl)picene . . . . . . . 78 3.4.1 3,10-Bis(bromo)picene on Au(111) . . . . . . . . . . . . . . . 79 3.4.2 3,10-Bis(bromomethyl)picene on Au(111) . . . . . . . . . . . 80 3.4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4 Metal Organic Coordination Complex 88 4.1 PCAH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.1.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.2 Pyrenyl-DiKetone-Phenyl . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.2.2 Molecule Absoprtion . . . . . . . . . . . . . . . . . . . . . . 95 2 4.2.3 Cobalt Metal with Molecule . . . . . . . . . . . . . . . . . . 98 4.2.4 Annealing Induced Metal Coordination . . . . . . . . . . . . 101 4.2.5 Scanning Tunneling Spectroscopy . . . . . . . . . . . . . . . 105 4.3 Pb+PyDKPh+surface annealing . . . . . . . . . . . . . . . . . . . . 106 4.3.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 Summary 114 3

    [1] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope.
    Phys. Rev. B, 31:805–813, Jan 1985.
    [2] Mei Yin Lin. Vacuum Technology and Application. Taiwan Instrument Research
    Institute, 2001.
    [3] Pfeiffer. The Vacuum Technology Book Volume II. Pfeiffer Vacuum, 2000.
    [1] Song-Wen Chen, I-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption
    of phenacenes on a metallic substrate: Revisited. The Journal of
    Physical Chemistry C, 121(21):11390–11398, may 2017.
    [2] O. Burg. Ueber einen neuen kohlenwassterstoff aus dem braunkohlentheer,
    das picen. Ber. Dtsch. Chem. Ges., 13(2):1834–1837, jul 1880.
    [3] Eug. Bamberger and Frederick D. Chattaway. Ueber das picen. Liebigs Ann.,
    284(1-2):52–80, 1894.
    [4] Frank B. Mallory, Kelly E. Butler, Amanda C. Evans, Emilie J. Brondyke,
    Clelia W. Mallory, Changqing Yang, and Aviva Ellenstein. Phenacenes: a
    family of graphite ribbons. 2. syntheses of some [7]phenacenes and an
    [11]phenacene by stilbene-like photocyclizations. Journal of the American
    Chemical Society, 119(9):2119–2124, mar 1997.
    [5] Hideki Okamoto, Shino Hamao, Ritsuko Eguchi, Hidenori Goto, Yasuhiro
    Takabayashi, Paul Yu-Hsiang Yen, Luo Uei Liang, Chia-Wei Chou, Germar
    Hoffmann, Shin Gohda, Hisako Sugino, Yen-Fa Liao, Hirofumi Ishii,
    and Yoshihiro Kubozono. Synthesis of the extended phenacene molecules,
    [10]phenacene and [11]phenacene, and their performance in a field-effect transistor.
    Scientific Reports, 9(1), mar 2019.
    [6] Guillaume Naulet, Stéphanie Huet-Exiga, Harald Bock, and Fabien Durola.
    Synthesis of a [20]phenacene dodeca-ester by controlled condensation of seven
    naphthalene-based building blocks. Organic Chemistry Frontiers, 6(7):994–
    997, 2019.
    42
    [7] Hideki Okamoto, Naoko Kawasaki, Yumiko Kaji, Yoshihiro Kubozono, Akihiko
    Fujiwara, and Minoru Yamaji. Air-assisted high-performance field-effect
    transistor with thin films of picene. Journal of the American Chemical Society,
    130(32):10470–10471, aug 2008.
    [8] Hideki Okamoto, Shino Hamao, Hidenori Goto, Yusuke Sakai, Masanari
    Izumi, Shin Gohda, Yoshihiro Kubozono, and Ritsuko Eguchi. Transistor
    application of alkyl-substituted picene. Scientific Reports, 4(1), may 2014.
    [9] Ryoji Mitsuhashi, Yuta Suzuki, Yusuke Yamanari, Hiroki Mitamura, Takashi
    Kambe, Naoshi Ikeda, Hideki Okamoto, Akihiko Fujiwara, Minoru Yamaji,
    Naoko Kawasaki, Yutaka Maniwa, and Yoshihiro Kubozono. Superconductivity
    in alkali-metal-doped picene. Nature, 464(7285):76–79, mar 2010.
    [10] Xiji Shao, Xuhang Ma, Mingjing Liu, Tao Zhang, Yaping Ma, Chaoqiang Xu,
    Xuefeng Wu, Tao Lin, and Kedong Wang. Comparing study of picene thin
    films on SnSe and au(1 1 1) surfaces. Chemical Physics, 532:110689, apr 2020.
    [11] Yuri Hasegawa, Yoichi Yamada, Takuya Hosokai, Kaveenga Rasika
    Koswattage, Masahiro Yano, Yutaka Wakayama, and Masahiro Sasaki. Overlapping
    of frontier orbitals in well-defined dinaphtho[2,3-b:20,30-f]thieno[3,2-
    b]-thiophene and picene monolayers. The Journal of Physical Chemistry C,
    120(38):21536–21542, sep 2016.
    [12] M. Yano, M. Endo, Y. Hasegawa, R. Okada, Y. Yamada, and M. Sasaki.
    Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements
    and electronic structures. The Journal of Chemical Physics,
    141(3):034708, jul 2014.
    [13] Simon J. Kelly, Dan C. Sorescu, Jun Wang, Kaye A. Archer, Kenneth D.
    Jordan, and Petro Maksymovych. Structural and electronic properties of
    ultrathin picene films on the ag(100) surface. Surface Science, 652:67–75, oct
    2016.
    [14] Tobias Huempfner, Martin Hafermann, Christian Udhardt, Felix Otto, Roman
    Forker, and Torsten Fritz. Insight into the unit cell: Structure of picene
    43thin films on ag(100) revealed with complementary methods. The Journal of
    Chemical Physics, 145(17):174706, nov 2016.
    [15] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
    Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-
    Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling
    microscopy/spectroscopy of picene thin films formed on ag(111). The Journal
    of Chemical Physics, 141(11):114701, sep 2014.
    [16] Shota Fujino, Minoru Yamaji, Hideki Okamoto, Toshiki Mutai, Isao
    Yoshikawa, Hirohiko Houjou, and Fumito Tani. Systematic investigations on
    fused uppi-system compounds of seven benzene rings prepared by photocyclization
    of diphenanthrylethenes. Photochemical & Photobiological Sciences,
    16(6):925–934, 2017.
    [17] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki
    Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro
    Kubozono. Synthesis and transistor application of the extremely extended
    phenacene molecule, [9]phenacene. Scientific Reports, 6(1), feb 2016.
    [18] Hideki Okamoto, Haruhiko Takahashi, Takamitsu Takane, Yasuhiro
    Nishiyama, Kiyomi Kakiuchi, Shin Gohda, and Minoru Yamaji. Convenient
    phenacene synthesis by sequentially performed wittig reaction and mallory
    photocyclization using continuous-flow techniques. Synthesis, 49(13):2949–
    2957, apr 2017.
    [19] Hideki Okamoto, Shino Hamao, Keiko Kozasa, YananWang, Yoshihiro Kubozono,
    Yong-He Pan, Yu-Hsiang Yen, Germar Hoffmann, Fumito Tani, and
    Kenta Goto. Synthesis of [7]phenacene incorporating tetradecyl chains in
    the axis positions and its application in field-effect transistors. Journal of
    Materials Chemistry C, 8(22):7422–7435, 2020.
    [20] Joan Teyssandier, Kunal S. Mali, and Steven De Feyter. Halogen bonding in
    two-dimensional crystal engineering. ChemistryOpen, 9:225–241, Feb 2020.
    [21] Rui-Fen Dou, Xu-Cun Ma, Luan Xi, Hin Lap Yip, King Young Wong,
    Woon Ming Lau, Jin-Feng Jia, Qi-Kun Xue, Wei-Sheng Yang, Hong Ma,
    44
    and Alex K-Y. Jen. Self-assembled monolayers of aromatic thiols stabilized
    by parallel-displaced ππ stacking interactions. Langmuir, 22(7):3049–3056,
    2006. PMID: 16548556.
    [22] Benjamin W. Gung, Mehul Patel, and Xiaowen Xue. A threshold for charge
    transfer in aromatic interactions? a quantitative study of π-stacking interactions.
    The Journal of Organic Chemistry, 70(25):10532–10537, 2005. PMID:
    16323868.
    [23] Scott L. Cockroft, Julie Perkins, Cristiano Zonta, Harry Adams, Sharon E.
    Spey, Caroline M. R. Low, Jeremy G. Vinter, Kevin R. Lawson, Christopher J.
    Urch, and Christopher A. Hunter. Substituent effects on aromatic stacking
    interactions. Org. Biomol. Chem., 5:1062–1080, 2007.
    [24] Michelle Watt, Laura K. E. Hardebeck, Charles C. Kirkpatrick, and Michael
    Lewis. Face-to-face arenearene binding energies: Dominated by dispersion but
    predicted by electrostatic and dispersion/polarizability substituent constants.
    Journal of the American Chemical Society, 133(11):3854–3862, 2011. PMID:
    21361361.
    [25] Christopher A. Hunter and Jeremy K. M. Sanders. The nature of .pi.-.pi.
    interactions. Journal of the American Chemical Society, 112(14):5525–5534,
    1990.
    [26] Mark J. Rashkin and Marcey L. Waters. Unexpected substituent effects in
    offset ππ stacked interactions in water. Journal of the American Chemical
    Society, 124(9):1860–1861, 2002. PMID: 11866592.
    [27] Ashley L. Ringer, Mutasem O. Sinnokrot, Ryan P. Lively, and C. David
    Sherrill. The effect of multiple substituents on sandwich and t-shaped π–π
    interactions. Chemistry – A European Journal, 12(14):3821–3828, 2006.
    [28] Steven E. Wheeler and K. N. Houk. Substituent effects in the benzene dimer
    are due to direct interactions of the substituents with the unsubstituted benzene.
    Journal of the American Chemical Society, 130(33):10854–10855, 2008.
    PMID: 18652453. [29] Steven E. Wheeler. Local nature of substituent effects in stacking interactions.
    Journal of the American Chemical Society, 133(26):10262–10274, 2011.
    PMID: 21599009.
    [30] Steven E. Wheeler and Jacob W. G. Bloom. Toward a more complete understanding
    of noncovalent interactions involving aromatic rings. The Journal of
    Physical Chemistry A, 118(32):6133–6147, 2014. PMID: 24937084. [1] Qian Shen, Hong-Ying Gao, and Harald Fuchs. Frontiers of on-surface synthesis:
    From principles to applications. Nano Today, 13:77 – 96, 2017.
    [2] Leonhard Grill, Matthew Dyer, Leif Lafferentz, Mats Persson, Maike V. Peters,
    and Stefan Hecht. Nano-architectures by covalent assembly of molecular
    building blocks. Nat. Nanotechnol., 2(11):687–691, November 2007.
    [3] F. Ullmann and Jean Bielecki. Ueber synthesen in der biphenylreihe. Ber.
    Dtsch. Chem. Ges., 34(2):2174–2185, 1901.
    [4] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun,
    Stephan Blankenburg, Matthias Muoth, Ari P. Seitsonen, Moussa Saleh, Xinliang
    Feng, Klaus Müllen, and Roman Fasel. Atomically precise bottom-up
    fabrication of graphene nanoribbons. Nature, 466(7305):470–473, July 2010.
    [5] Andrew DiLullo, Shih-Hsin Chang, Nadjib Baadji, Kendal Clark, Jan-Peter
    Klöckner, Marc-Heinrich Prosenc, Stefano Sanvito, Roland Wiesendanger,
    Germar Hoffmann, and Saw-Wai Hla. Molecular kondo chain. ACS Nano
    Lett., 12(6):3174–3179, June 2012.
    [6] Xuelei Su, Zhijie Xue, Gang Li, and Ping Yu. Edge state engineering of
    graphene nanoribbons. Nano Lett., 18(9):5744–5751, September 2018.
    [7] Giang D. Nguyen, Hsin-Zon Tsai, Arash A. Omrani, Tomas Marangoni,
    Meng Wu, Daniel J. Rizzo, Griffin F. Rodgers, Ryan R. Cloke, Rebecca A.
    Durr, Yuki Sakai, Franklin Liou, Andrew S. Aikawa, James R. Chelikowsky,
    Steven G. Louie, Felix R. Fischer, and Michael F. Crommie. Atomically precise
    graphene nanoribbon heterojunctions from a single molecular precursor.
    Nat. Nanotechnol., 12(11):1077–1082, November 2017.
    83
    [8] Daniel J. Rizzo, Gregory Veber, Ting Cao, Christopher Bronner, Ting Chen,
    Fangzhou Zhao, Henry Rodriguez, Steven G. Louie, Michael F. Crommie,
    and Felix R. Fischer. Topological band engineering of graphene nanoribbons.
    Nature, 560(7717):204–208, August 2018.
    [9] Markus Kittelmann, Markus Nimmrich, Robert Lindner, André Gourdon,
    and Angelika Kühnle. Sequential and site-specific on-surface synthesis on a
    bulk insulator. ACS Nano, 7(6):5614–5620, June 2013.
    [10] M. Kolmer, A.K. Steiner, I. Izydorczyk, W. Ko, M. Engelund, M. Szymonski,
    A.-P. Li, and K. Amsharov. Rational synthesis of atomically precise graphene
    nanoribbons directly on metal oxide surfaces. Science, 369(6503):571–575,
    2020.
    [11] Sam Haq, Felix Hanke, John Sharp, Mats Persson, David B. Amabilino,
    and Rasmita Raval. Versatile bottom-up construction of diverse macromolecules
    on a surface observed by scanning tunneling microscopy. ACS
    Nano, 8(9):8856–8870, September 2014.
    [12] José I. Urgel, Marco Di Giovannantonio, Guido Gandus, Qiang Chen, Xunshan
    Liu, Hironobu Hayashi, Pascal Ruffieux, Silvio Decurtins, Akimitsu
    Narita, Daniele Passerone, Hiroko Yamada, Shi-Xia Liu, Klaus Müllen,
    Carlo A. Pignedoli, and Roman Fasel. Overcoming steric hindrance in
    aryl-aryl homocoupling via on-surface copolymerization. ChemPhysChem,
    20(18):2360–2366, August 2019.
    [13] Luis M. Mateo, Qiang Sun, Shi-Xia Liu, Jesse J. Bergkamp, Kristjan Eimre,
    Carlo A. Pignedoli, Pascal Ruffieux, Silvio Decurtins, Giovanni Bottari, Roman
    Fasel, and Tomas Torres. On-surface synthesis and characterization of
    triply fused porphyrin–graphene nanoribbon hybrids. Angew Chem. Int. Ed.,
    59(3):1334–1339, 2020.
    [14] L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, F. Esch, S. Hecht,
    and L. Grill. Controlling on-surface polymerization by hierarchical and
    substrate-directed growth. Nature Chemistry, 4(3):215–220, March 2012.
    84
    [15] Christian Wäckerlin, Jingyi Li, Anaïs Mairena, Kévin Martin, Narcis Avarvari,
    and Karl-Heinz Ernst. Surface-assisted diastereoselective ullmann coupling
    of bishelicenes. Chem. Commun., 52(86):12694–12697, 2016.
    [16] Hideki Okamoto, Haruhiko Takahashi, Takamitsu Takane, Yasuhiro
    Nishiyama, Kiyomi Kakiuchi, Shin Gohda, and Minoru Yamaji. Convenient
    phenacene synthesis by sequentially performed wittig reaction and mallory
    photocyclization using continuous-flow techniques. Synthesis, 49(13):2949–
    2957, 2017.
    [17] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
    Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-
    Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling
    microscopy/spectroscopy of picene thin films formed on ag(111). J. Chem.
    Phys., 141(11):114701, 2014.
    [18] Song-Wen Chen, I.-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption
    of phenacenes on a metallic substrate: Revisited. J. Phys. Chem. C,
    121(21):11390–11398, June 2017.
    [19] Carlos Sánchez-Sánchez, Adrien Nicolaï, Frédéric Rossel, Jinming Cai, Junzhi
    Liu, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel, and Vincent
    Meunier. On-surface cyclization of ortho-dihalotetracenes to four- and sixmembered
    rings. J. Am. Chem. Soc., 139(48):17617–17623, December 2017.
    [20] Jingcheng Li, Nestor Merino-Díez, Eduard Carbonell-Sanromà, Manuel Vilas-
    Varela, Dimas G. de Oteyza, Diego Peña, Martina Corso, and Jose Ignacio
    Pascual. Survival of spin state in magnetic porphyrins contacted by graphene
    nanoribbons. Sci. Adv., 4(2):eaaq0582, February 2018.
    [21] Jingyi Li, Kévin Martin, Narcis Avarvari, Christian Wäckerlin, and Karl-
    Heinz Ernst. Spontaneous separation of on-surface synthesized tris-helicenes
    into two-dimensional homochiral domains. Chem. Commun., 54(57):7948–
    7951, 2018.
    [22] Shantanu Mishra, Thorsten G. Lohr, Carlo A. Pignedoli, Junzhi Liu, Reinhard
    Berger, José I. Urgel, Klaus Müllen, Xinliang Feng, Pascal Ruffieux,
    85
    and Roman Fasel. Tailoring bond topologies in open-shell graphene nanostructures.
    ACS Nano, 12(12):11917–11927, December 2018.
    [23] Marco Di Giovannantonio, Okan Deniz, José I. Urgel, Roland Widmer,
    Thomas Dienel, Samuel Stolz, Carlos Sánchez-Sánchez, Matthias Muntwiler,
    Tim Dumslaff, Reinhard Berger, Akimitsu Narita, Xinliang Feng, Klaus
    Müllen, Pascal Ruffieux, and Roman Fasel. On-surface growth dynamics
    of graphene nanoribbons: The role of halogen functionalization. ACS Nano,
    12(1):74–81, January 2018.
    [24] Min Chen, Jie Xiao, Hans-Peter Steinrück, Shiyong Wang, Weihua Wang,
    Nian Lin, Wolfgang Hieringer, and J. Michael Gottfried. Combined photoemission
    and scanning tunneling microscopy study of the surface-assisted
    ullmann coupling reaction. J. Phys. Chem. C, 118(13):6820–6830, April 2014.
    [25] Néstor Merino-Díez, Alejandro Pérez Paz, Jingcheng Li, Manuel Vilas-Varela,
    James Lawrence, Mohammed S. G. Mohammed, Alejandro Berdonces-
    Layunta, Ana Barragán, Jose Ignacio Pascual, Jorge Lobo-Checa, Diego
    Peña, and Dimas G. de Oteyza. Hierarchy in the halogen activation during
    surface-promoted ullmann coupling. ChemPhysChem, 20(18):2305–2310,
    August 2019.
    [26] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki
    Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro
    Kubozono. Synthesis and transistor application of the extremely extended
    phenacene molecule, [9]phenacene. Scientific Reports, 6(1):21008, February
    2016.
    [27] Andrea Basagni, Guillaume Vasseur, Carlo A. Pignedoli, Manuel Vilas-
    Varela, Diego Peña, Louis Nicolas, Lucia Vitali, Jorge Lobo-Checa, Dimas G.
    de Oteyza, Francesco Sedona, Maurizio Casarin, J. Enrique Ortega, and
    Mauro Sambi. Tunable band alignment with unperturbed carrier mobility of
    on-surface synthesized organic semiconducting wires. ACS Nano, 10(2):2644–
    2651, February 2016.
    86
    [28] Tobias Huempfner, Martin Hafermann, Christian Udhardt, Felix Otto, Roman
    Forker, and Torsten Fritz. Insight into the unit cell: Structure of picene
    thin films on ag(100) revealed with complementary methods. J. Chem. Phys.,
    145(17):174706, August 2016.
    [29] L. Petersen, P. Laitenberger, E. Lægsgaard, and F. Besenbacher. Screening
    waves from steps and defects on cu(111) and au(111) imaged with stm: Contribution
    from bulk electrons. Phys. Rev. B, 58(11):7361–7366, September
    1998.
    [30] Qiang Sun, Chi Zhang, Huihui Kong, Qinggang Tan, and Wei Xu. Onsurface
    aryl-aryl coupling via selective c-h activation. Chem. Commun.,
    50(80):11825–11828, 2014.
    [31] Qiang Sun, Chi Zhang, Zhiwen Li, Huihui Kong, Qinggang Tan, Aiguo Hu,
    and Wei Xu. On-surface formation of one-dimensional polyphenylene through
    bergman cyclization. J. Am. Chem. Soc., 135(23):8448–8451, June 2013.
    [32] Tao Wang, Haifeng Lv, Lin Feng, Zhijie Tao, Jianmin Huang, Qitang Fan,
    Xiaojun Wu, and Junfa Zhu. Unravelling the mechanism of glaser coupling
    reaction on ag(111) and cu(111) surfaces: a case for halogen substituted terminal
    alkyne. J. Phys. Chem. C, 122(26):14537–14545, July 2018.
    [33] Qiang Sun, Liangliang Cai, Yuanqi Ding, Honghong Ma, Chunxue Yuan, and
    Wei Xu. Single-molecule insight into wurtz reactions on metal surfaces. Phys.
    Chem. Chem. Phys., 18:2730–2735, 2016.
    87
    [1] Luning Chen, Xibo Zhang, Xiqing Cheng, Zhaoxiong Xie, Qin Kuang, and
    Lansun Zheng. The function of metal–organic frameworks in the application
    of mof-based composites. Nanoscale Adv., 2:2628–2647, 2020.
    [2] A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, and M. Eddaoudi. A metalorganic
    framework–based splitter for separating propylene from propane. Science,
    353(6295):137–140, 2016.
    [3] Jerry Y. S. Lin. Molecular sieves for gas separation. Science, 353(6295):121–
    122, 2016.
    [4] Bhatt P.M. Chappanda K.N. Tchalala, M.R. Fluorinated mof platform for
    selective removal and sensing of so2 from flue gas and air. Nature Communication,
    2019.
    [5] Zhang Z. Tranca D.C. Dong, R. A coronene-based semiconducting twodimensional
    metal-organic framework with ferromagnetic behavior. Nature
    Communication, 2018.
    [6] Sebastian Stepanow, Nian Lin, and Johannes V Barth. Modular assembly
    of low-dimensional coordination architectures on metal surfaces. Journal of
    Physics: Condensed Matter, 20(18):184002, apr 2008.
    [7] Dirk Kühne, Florian Klappenberger, Régis Decker, Uta Schlickum, Harald
    Brune, Svetlana Klyatskaya, Mario Ruben, and Johannes V. Barth. Highquality
    2d metalorganic coordination network providing giant cavities within
    mesoscale domains. Journal of the American Chemical Society, 131(11):3881–
    3883, 2009. PMID: 19256496.
    110
    [8] Jun Li, Leonid Solianyk, Nico Schmidt, Brian Baker, Stefano Gottardi,
    Juan Carlos Moreno Lopez, Mihaela Enache, Leticia Monjas, Ramon van der
    Vlag, Remco W. A. Havenith, Anna K. H. Hirsch, and Meike Stöhr. Lowdimensional
    metal–organic coordination structures on graphene. The Journal
    of Physical Chemistry C, 123(20):12730–12735, 2019.
    [9] Nian Lin, Sebastian Stepanow, Franck Vidal, Klaus Kern, Mohammad S.
    Alam, Stefan Strömsdörfer, Viacheslav Dremov, Paul Müller, Aitor Landa,
    and Mario Ruben. Surface-assisted coordination chemistry and self-assembly.
    Dalton Trans., pages 2794–2800, 2006.
    [10] Myunghyun Paik Suh, Hye Jeong Park, Thazhe Kootteri Prasad, and Dae-
    Woon Lim. Hydrogen storage in metal–organic frameworks. Chemical Reviews,
    112(2):782–835, 2012. PMID: 22191516.
    [11] Johannes V. Barth. Fresh perspectives for surface coordination chemistry.
    Surface Science, 603(10):1533–1541, 2009. Special Issue of Surface Science
    dedicated to Prof. Dr. Dr. h.c. mult. Gerhard Ertl, Nobel-Laureate in Chemistry
    2007.
    [12] Lei Dong, Zi’Ang Gao, and Nian Lin. Self-assembly of metal–organic coordination
    structures on surfaces. Progress in Surface Science, 91(3):101–135,
    2016.
    [13] D. Stacchiola, J. B. Park, P. Liu, S. Ma, F. Yang, D. E. Starr, E. Muller,
    P. Sutter, and J. Hrbek. Water nucleation on gold: Existence of a unique
    double bilayer. The Journal of Physical Chemistry C, 113(34):15102–15105,
    2009.
    [14] I Chizhov, A Kahn, and G Scoles. Initial growth of 3,4,9,10-
    perylenetetracarboxylic-dianhydride (ptcda) on au(111): a scanning tunneling
    microscopy study. Journal of Crystal Growth, 208(1):449–458, 2000.
    [15] M. Mura, X. Sun, F. Silly, H. T. Jonkman, G. A. D. Briggs, M. R. Castell,
    and L. N. Kantorovich. Experimental and theoretical analysis of h-bonded
    supramolecular assemblies of ptcda molecules. Phys. Rev. B, 81:195412, May
    2010.
    111
    [16] Kim J.K. Kovalev Shokova, E.A. 1,3-diketones. synthesis and properties.
    Russ J Org Chem, 2015.
    [17] Joohee Pradhan and Anju Goyal. -diketones: Important intermediates for
    drug synthesis. International Journal of Pharmaceutical Research & Allied
    Sciences, 4(2), 2015.
    [18] Tiandong Liu, Alan D. Chien, Jiwei Lu, Guoqing Zhang, and Cassandra L.
    Fraser. Arene effects on difluoroboron β-diketonate mechanochromic luminescence.
    J. Mater. Chem., 21:8401–8408, 2011.
    [19] Yuhua Zhang and Chao-Jun Li. Highly efficient direct alkylation of activated
    methylene by cycloalkanes, 2007.
    [20] Michitaka Mamiya, Yurie Suwa, Hideki Okamoto, and Minoru Yamaji.
    Photochemically-assisted synthesis and photophysical properties of difluoroboronated
    β-diketones with fused four-benzene-ring chromophores, chrysene
    and pyrene. Photochem. Photobiol. Sci., 15:928–936, 2016.
    [21] Hung-Hsiang Yang, Yu-Hsun Chu, Chun-I Lu, Tsung-Han Yang, Kai-Jheng
    Yang, Chao-Cheng Kaun, Germar Hoffmann, and Minn-Tsong Lin. Digitized
    charge transfer magnitude determined by metal–organic coordination number.
    ACS Nano, 7(3):2814–2819, 2013. PMID: 23451803.
    [22] Karina Morgenstern, Jakob Kibsgaard, Jeppe V. Lauritsen, Erik Lægsgaard,
    and Flemming Besenbacher. Cobalt growth on two related close-packed noble
    metal surfaces. Surface Science, 601(9):1967–1972, 2007.
    [23] V Repain, G Baudot, H Ellmer, and S Rousset. Ordered growth of cobalt
    nanostructures on a au(111) vicinal surface: nucleation mechanisms and temperature
    behavior. Materials Science and Engineering: B, 96(2):178–187,
    2002.
    [24] Keiji Doi, Emi Minamitani, Shunji Yamamoto, Ryuichi Arafune, Yasuo
    Yoshida, Satoshi Watanabe, and Yukio Hasegawa. Electronic and magnetic
    effects of a stacking fault in cobalt nanoscale islands on the ag(111) surface.
    Phys. Rev. B, 92:064421, Aug 2015.
    112
    [25] Youness Benjalal, Jacques Bonvoisin, and Xavier Bouju. Unraveling the
    molecular conformations of a single ruthenium complex adsorbed on the
    ag(111) surface by calculations. Phys. Chem. Chem. Phys., 21:10022–10027,
    2019.
    [26] Suchandra Bhattacharjee, Muhammad Imran Khan, Xiaofang Li, Qi-Long
    Zhu, and Xin-Tao Wu. Recent progress in asymmetric catalysis and chromatographic
    separation by chiral metal–organic frameworks. Catalysts, 8(3),
    2018.
    [27] Guoqing Lyu, Ran Zhang, Xin Zhang, Pei Nian Liu, and Nian Lin. Onsurface
    assembly of low-dimensional pb-coordinated metal–organic structures.
    J. Mater. Chem. C, 3:3252–3257, 2015.
    113

    QR CODE