研究生: |
嚴昱翔 Yen, Paul Yu-Hsiang |
---|---|
論文名稱: |
表面催化合成反應 On-Surface Synthesis |
指導教授: |
霍夫曼
Germar, Hoffmann |
口試委員: |
唐述中
Tang, Shu-Jung 關肇正 Kuan, Chao Cheng 顏宏儒 Yen, Hung Ju |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 表面物理 、分子自組裝薄膜 、表面合成 、掃描穿隧式電子顯微鏡 、凝態物理 、分子半導體 |
外文關鍵詞: | STM, surface synthesis, self-assembly, organic electronics, ullmann coupling, metal coordination |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統半導體設計已經逼近物理極限,並且在原子尺度上的精確設計上面臨許多的挑戰。由分子及原子蒸鍍在基板上自下而上的方式提供了製造更小元件的可能性。從分子建構單元生長二維材料表面是最近熱門的領域。分子電子元件的發展取決於我們對局域性的物理化學機制了解以及調控及合成鍵合的開發。在此篇論文中,掃描穿隧式顯微鏡技術被應用在探討分子表面自組裝, 表面催化共價耦合跟有機金屬鍵的系統上。延展Pi電子網絡對於物理、化學、材料、元件製造上都是很有趣的課題。在此,我們給出了各類新合成Pi電子網絡分子在不同基板系統中的結果。
Traditional semiconductor structure fabricated by top-down approach are reaching
intrinsic physical limits. A Bottom-up approach through the deposition of
atoms, molecules provides the prospects of smaller device designs. The synthesis
of extended but atomically defined nanostructures from molecular building
blocks in the vicinity of a two-dimensional surface is a strongly emerging field of
research. Progress towards single-molecule electronics relies on a thorough understanding
of local physio-chemical processes and development of synthetic route for
controlled hetero-coupling. In this thesis, STM (Scanning Tunneling Microscopy)
is used to study the growth behavior of molecular self-assembly, surface-assited
coupling reactions and metal-organic formation on metallic surfaces. Extended -
electron molecular networks are of much interest in chemistry, physics, materials
science and device application. Here, the result of a multitude of newly synthesized
molecules are presented.
[1] J. Tersoff and D. R. Hamann. Theory of the scanning tunneling microscope.
Phys. Rev. B, 31:805–813, Jan 1985.
[2] Mei Yin Lin. Vacuum Technology and Application. Taiwan Instrument Research
Institute, 2001.
[3] Pfeiffer. The Vacuum Technology Book Volume II. Pfeiffer Vacuum, 2000.
[1] Song-Wen Chen, I-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption
of phenacenes on a metallic substrate: Revisited. The Journal of
Physical Chemistry C, 121(21):11390–11398, may 2017.
[2] O. Burg. Ueber einen neuen kohlenwassterstoff aus dem braunkohlentheer,
das picen. Ber. Dtsch. Chem. Ges., 13(2):1834–1837, jul 1880.
[3] Eug. Bamberger and Frederick D. Chattaway. Ueber das picen. Liebigs Ann.,
284(1-2):52–80, 1894.
[4] Frank B. Mallory, Kelly E. Butler, Amanda C. Evans, Emilie J. Brondyke,
Clelia W. Mallory, Changqing Yang, and Aviva Ellenstein. Phenacenes: a
family of graphite ribbons. 2. syntheses of some [7]phenacenes and an
[11]phenacene by stilbene-like photocyclizations. Journal of the American
Chemical Society, 119(9):2119–2124, mar 1997.
[5] Hideki Okamoto, Shino Hamao, Ritsuko Eguchi, Hidenori Goto, Yasuhiro
Takabayashi, Paul Yu-Hsiang Yen, Luo Uei Liang, Chia-Wei Chou, Germar
Hoffmann, Shin Gohda, Hisako Sugino, Yen-Fa Liao, Hirofumi Ishii,
and Yoshihiro Kubozono. Synthesis of the extended phenacene molecules,
[10]phenacene and [11]phenacene, and their performance in a field-effect transistor.
Scientific Reports, 9(1), mar 2019.
[6] Guillaume Naulet, Stéphanie Huet-Exiga, Harald Bock, and Fabien Durola.
Synthesis of a [20]phenacene dodeca-ester by controlled condensation of seven
naphthalene-based building blocks. Organic Chemistry Frontiers, 6(7):994–
997, 2019.
42
[7] Hideki Okamoto, Naoko Kawasaki, Yumiko Kaji, Yoshihiro Kubozono, Akihiko
Fujiwara, and Minoru Yamaji. Air-assisted high-performance field-effect
transistor with thin films of picene. Journal of the American Chemical Society,
130(32):10470–10471, aug 2008.
[8] Hideki Okamoto, Shino Hamao, Hidenori Goto, Yusuke Sakai, Masanari
Izumi, Shin Gohda, Yoshihiro Kubozono, and Ritsuko Eguchi. Transistor
application of alkyl-substituted picene. Scientific Reports, 4(1), may 2014.
[9] Ryoji Mitsuhashi, Yuta Suzuki, Yusuke Yamanari, Hiroki Mitamura, Takashi
Kambe, Naoshi Ikeda, Hideki Okamoto, Akihiko Fujiwara, Minoru Yamaji,
Naoko Kawasaki, Yutaka Maniwa, and Yoshihiro Kubozono. Superconductivity
in alkali-metal-doped picene. Nature, 464(7285):76–79, mar 2010.
[10] Xiji Shao, Xuhang Ma, Mingjing Liu, Tao Zhang, Yaping Ma, Chaoqiang Xu,
Xuefeng Wu, Tao Lin, and Kedong Wang. Comparing study of picene thin
films on SnSe and au(1 1 1) surfaces. Chemical Physics, 532:110689, apr 2020.
[11] Yuri Hasegawa, Yoichi Yamada, Takuya Hosokai, Kaveenga Rasika
Koswattage, Masahiro Yano, Yutaka Wakayama, and Masahiro Sasaki. Overlapping
of frontier orbitals in well-defined dinaphtho[2,3-b:20,30-f]thieno[3,2-
b]-thiophene and picene monolayers. The Journal of Physical Chemistry C,
120(38):21536–21542, sep 2016.
[12] M. Yano, M. Endo, Y. Hasegawa, R. Okada, Y. Yamada, and M. Sasaki.
Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements
and electronic structures. The Journal of Chemical Physics,
141(3):034708, jul 2014.
[13] Simon J. Kelly, Dan C. Sorescu, Jun Wang, Kaye A. Archer, Kenneth D.
Jordan, and Petro Maksymovych. Structural and electronic properties of
ultrathin picene films on the ag(100) surface. Surface Science, 652:67–75, oct
2016.
[14] Tobias Huempfner, Martin Hafermann, Christian Udhardt, Felix Otto, Roman
Forker, and Torsten Fritz. Insight into the unit cell: Structure of picene
43thin films on ag(100) revealed with complementary methods. The Journal of
Chemical Physics, 145(17):174706, nov 2016.
[15] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-
Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling
microscopy/spectroscopy of picene thin films formed on ag(111). The Journal
of Chemical Physics, 141(11):114701, sep 2014.
[16] Shota Fujino, Minoru Yamaji, Hideki Okamoto, Toshiki Mutai, Isao
Yoshikawa, Hirohiko Houjou, and Fumito Tani. Systematic investigations on
fused uppi-system compounds of seven benzene rings prepared by photocyclization
of diphenanthrylethenes. Photochemical & Photobiological Sciences,
16(6):925–934, 2017.
[17] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki
Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro
Kubozono. Synthesis and transistor application of the extremely extended
phenacene molecule, [9]phenacene. Scientific Reports, 6(1), feb 2016.
[18] Hideki Okamoto, Haruhiko Takahashi, Takamitsu Takane, Yasuhiro
Nishiyama, Kiyomi Kakiuchi, Shin Gohda, and Minoru Yamaji. Convenient
phenacene synthesis by sequentially performed wittig reaction and mallory
photocyclization using continuous-flow techniques. Synthesis, 49(13):2949–
2957, apr 2017.
[19] Hideki Okamoto, Shino Hamao, Keiko Kozasa, YananWang, Yoshihiro Kubozono,
Yong-He Pan, Yu-Hsiang Yen, Germar Hoffmann, Fumito Tani, and
Kenta Goto. Synthesis of [7]phenacene incorporating tetradecyl chains in
the axis positions and its application in field-effect transistors. Journal of
Materials Chemistry C, 8(22):7422–7435, 2020.
[20] Joan Teyssandier, Kunal S. Mali, and Steven De Feyter. Halogen bonding in
two-dimensional crystal engineering. ChemistryOpen, 9:225–241, Feb 2020.
[21] Rui-Fen Dou, Xu-Cun Ma, Luan Xi, Hin Lap Yip, King Young Wong,
Woon Ming Lau, Jin-Feng Jia, Qi-Kun Xue, Wei-Sheng Yang, Hong Ma,
44
and Alex K-Y. Jen. Self-assembled monolayers of aromatic thiols stabilized
by parallel-displaced ππ stacking interactions. Langmuir, 22(7):3049–3056,
2006. PMID: 16548556.
[22] Benjamin W. Gung, Mehul Patel, and Xiaowen Xue. A threshold for charge
transfer in aromatic interactions? a quantitative study of π-stacking interactions.
The Journal of Organic Chemistry, 70(25):10532–10537, 2005. PMID:
16323868.
[23] Scott L. Cockroft, Julie Perkins, Cristiano Zonta, Harry Adams, Sharon E.
Spey, Caroline M. R. Low, Jeremy G. Vinter, Kevin R. Lawson, Christopher J.
Urch, and Christopher A. Hunter. Substituent effects on aromatic stacking
interactions. Org. Biomol. Chem., 5:1062–1080, 2007.
[24] Michelle Watt, Laura K. E. Hardebeck, Charles C. Kirkpatrick, and Michael
Lewis. Face-to-face arenearene binding energies: Dominated by dispersion but
predicted by electrostatic and dispersion/polarizability substituent constants.
Journal of the American Chemical Society, 133(11):3854–3862, 2011. PMID:
21361361.
[25] Christopher A. Hunter and Jeremy K. M. Sanders. The nature of .pi.-.pi.
interactions. Journal of the American Chemical Society, 112(14):5525–5534,
1990.
[26] Mark J. Rashkin and Marcey L. Waters. Unexpected substituent effects in
offset ππ stacked interactions in water. Journal of the American Chemical
Society, 124(9):1860–1861, 2002. PMID: 11866592.
[27] Ashley L. Ringer, Mutasem O. Sinnokrot, Ryan P. Lively, and C. David
Sherrill. The effect of multiple substituents on sandwich and t-shaped π–π
interactions. Chemistry – A European Journal, 12(14):3821–3828, 2006.
[28] Steven E. Wheeler and K. N. Houk. Substituent effects in the benzene dimer
are due to direct interactions of the substituents with the unsubstituted benzene.
Journal of the American Chemical Society, 130(33):10854–10855, 2008.
PMID: 18652453. [29] Steven E. Wheeler. Local nature of substituent effects in stacking interactions.
Journal of the American Chemical Society, 133(26):10262–10274, 2011.
PMID: 21599009.
[30] Steven E. Wheeler and Jacob W. G. Bloom. Toward a more complete understanding
of noncovalent interactions involving aromatic rings. The Journal of
Physical Chemistry A, 118(32):6133–6147, 2014. PMID: 24937084. [1] Qian Shen, Hong-Ying Gao, and Harald Fuchs. Frontiers of on-surface synthesis:
From principles to applications. Nano Today, 13:77 – 96, 2017.
[2] Leonhard Grill, Matthew Dyer, Leif Lafferentz, Mats Persson, Maike V. Peters,
and Stefan Hecht. Nano-architectures by covalent assembly of molecular
building blocks. Nat. Nanotechnol., 2(11):687–691, November 2007.
[3] F. Ullmann and Jean Bielecki. Ueber synthesen in der biphenylreihe. Ber.
Dtsch. Chem. Ges., 34(2):2174–2185, 1901.
[4] Jinming Cai, Pascal Ruffieux, Rached Jaafar, Marco Bieri, Thomas Braun,
Stephan Blankenburg, Matthias Muoth, Ari P. Seitsonen, Moussa Saleh, Xinliang
Feng, Klaus Müllen, and Roman Fasel. Atomically precise bottom-up
fabrication of graphene nanoribbons. Nature, 466(7305):470–473, July 2010.
[5] Andrew DiLullo, Shih-Hsin Chang, Nadjib Baadji, Kendal Clark, Jan-Peter
Klöckner, Marc-Heinrich Prosenc, Stefano Sanvito, Roland Wiesendanger,
Germar Hoffmann, and Saw-Wai Hla. Molecular kondo chain. ACS Nano
Lett., 12(6):3174–3179, June 2012.
[6] Xuelei Su, Zhijie Xue, Gang Li, and Ping Yu. Edge state engineering of
graphene nanoribbons. Nano Lett., 18(9):5744–5751, September 2018.
[7] Giang D. Nguyen, Hsin-Zon Tsai, Arash A. Omrani, Tomas Marangoni,
Meng Wu, Daniel J. Rizzo, Griffin F. Rodgers, Ryan R. Cloke, Rebecca A.
Durr, Yuki Sakai, Franklin Liou, Andrew S. Aikawa, James R. Chelikowsky,
Steven G. Louie, Felix R. Fischer, and Michael F. Crommie. Atomically precise
graphene nanoribbon heterojunctions from a single molecular precursor.
Nat. Nanotechnol., 12(11):1077–1082, November 2017.
83
[8] Daniel J. Rizzo, Gregory Veber, Ting Cao, Christopher Bronner, Ting Chen,
Fangzhou Zhao, Henry Rodriguez, Steven G. Louie, Michael F. Crommie,
and Felix R. Fischer. Topological band engineering of graphene nanoribbons.
Nature, 560(7717):204–208, August 2018.
[9] Markus Kittelmann, Markus Nimmrich, Robert Lindner, André Gourdon,
and Angelika Kühnle. Sequential and site-specific on-surface synthesis on a
bulk insulator. ACS Nano, 7(6):5614–5620, June 2013.
[10] M. Kolmer, A.K. Steiner, I. Izydorczyk, W. Ko, M. Engelund, M. Szymonski,
A.-P. Li, and K. Amsharov. Rational synthesis of atomically precise graphene
nanoribbons directly on metal oxide surfaces. Science, 369(6503):571–575,
2020.
[11] Sam Haq, Felix Hanke, John Sharp, Mats Persson, David B. Amabilino,
and Rasmita Raval. Versatile bottom-up construction of diverse macromolecules
on a surface observed by scanning tunneling microscopy. ACS
Nano, 8(9):8856–8870, September 2014.
[12] José I. Urgel, Marco Di Giovannantonio, Guido Gandus, Qiang Chen, Xunshan
Liu, Hironobu Hayashi, Pascal Ruffieux, Silvio Decurtins, Akimitsu
Narita, Daniele Passerone, Hiroko Yamada, Shi-Xia Liu, Klaus Müllen,
Carlo A. Pignedoli, and Roman Fasel. Overcoming steric hindrance in
aryl-aryl homocoupling via on-surface copolymerization. ChemPhysChem,
20(18):2360–2366, August 2019.
[13] Luis M. Mateo, Qiang Sun, Shi-Xia Liu, Jesse J. Bergkamp, Kristjan Eimre,
Carlo A. Pignedoli, Pascal Ruffieux, Silvio Decurtins, Giovanni Bottari, Roman
Fasel, and Tomas Torres. On-surface synthesis and characterization of
triply fused porphyrin–graphene nanoribbon hybrids. Angew Chem. Int. Ed.,
59(3):1334–1339, 2020.
[14] L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, F. Esch, S. Hecht,
and L. Grill. Controlling on-surface polymerization by hierarchical and
substrate-directed growth. Nature Chemistry, 4(3):215–220, March 2012.
84
[15] Christian Wäckerlin, Jingyi Li, Anaïs Mairena, Kévin Martin, Narcis Avarvari,
and Karl-Heinz Ernst. Surface-assisted diastereoselective ullmann coupling
of bishelicenes. Chem. Commun., 52(86):12694–12697, 2016.
[16] Hideki Okamoto, Haruhiko Takahashi, Takamitsu Takane, Yasuhiro
Nishiyama, Kiyomi Kakiuchi, Shin Gohda, and Minoru Yamaji. Convenient
phenacene synthesis by sequentially performed wittig reaction and mallory
photocyclization using continuous-flow techniques. Synthesis, 49(13):2949–
2957, 2017.
[17] Yasuo Yoshida, Hung-Hsiang Yang, Hsu-Sheng Huang, Shu-You Guan,
Susumu Yanagisawa, Takuya Yokosuka, Minn-Tsong Lin, Wei-Bin Su, Chia-
Seng Chang, Germar Hoffmann, and Yukio Hasegawa. Scanning tunneling
microscopy/spectroscopy of picene thin films formed on ag(111). J. Chem.
Phys., 141(11):114701, 2014.
[18] Song-Wen Chen, I.-Chen Sang, Hideki Okamoto, and Germar Hoffmann. Adsorption
of phenacenes on a metallic substrate: Revisited. J. Phys. Chem. C,
121(21):11390–11398, June 2017.
[19] Carlos Sánchez-Sánchez, Adrien Nicolaï, Frédéric Rossel, Jinming Cai, Junzhi
Liu, Xinliang Feng, Klaus Müllen, Pascal Ruffieux, Roman Fasel, and Vincent
Meunier. On-surface cyclization of ortho-dihalotetracenes to four- and sixmembered
rings. J. Am. Chem. Soc., 139(48):17617–17623, December 2017.
[20] Jingcheng Li, Nestor Merino-Díez, Eduard Carbonell-Sanromà, Manuel Vilas-
Varela, Dimas G. de Oteyza, Diego Peña, Martina Corso, and Jose Ignacio
Pascual. Survival of spin state in magnetic porphyrins contacted by graphene
nanoribbons. Sci. Adv., 4(2):eaaq0582, February 2018.
[21] Jingyi Li, Kévin Martin, Narcis Avarvari, Christian Wäckerlin, and Karl-
Heinz Ernst. Spontaneous separation of on-surface synthesized tris-helicenes
into two-dimensional homochiral domains. Chem. Commun., 54(57):7948–
7951, 2018.
[22] Shantanu Mishra, Thorsten G. Lohr, Carlo A. Pignedoli, Junzhi Liu, Reinhard
Berger, José I. Urgel, Klaus Müllen, Xinliang Feng, Pascal Ruffieux,
85
and Roman Fasel. Tailoring bond topologies in open-shell graphene nanostructures.
ACS Nano, 12(12):11917–11927, December 2018.
[23] Marco Di Giovannantonio, Okan Deniz, José I. Urgel, Roland Widmer,
Thomas Dienel, Samuel Stolz, Carlos Sánchez-Sánchez, Matthias Muntwiler,
Tim Dumslaff, Reinhard Berger, Akimitsu Narita, Xinliang Feng, Klaus
Müllen, Pascal Ruffieux, and Roman Fasel. On-surface growth dynamics
of graphene nanoribbons: The role of halogen functionalization. ACS Nano,
12(1):74–81, January 2018.
[24] Min Chen, Jie Xiao, Hans-Peter Steinrück, Shiyong Wang, Weihua Wang,
Nian Lin, Wolfgang Hieringer, and J. Michael Gottfried. Combined photoemission
and scanning tunneling microscopy study of the surface-assisted
ullmann coupling reaction. J. Phys. Chem. C, 118(13):6820–6830, April 2014.
[25] Néstor Merino-Díez, Alejandro Pérez Paz, Jingcheng Li, Manuel Vilas-Varela,
James Lawrence, Mohammed S. G. Mohammed, Alejandro Berdonces-
Layunta, Ana Barragán, Jose Ignacio Pascual, Jorge Lobo-Checa, Diego
Peña, and Dimas G. de Oteyza. Hierarchy in the halogen activation during
surface-promoted ullmann coupling. ChemPhysChem, 20(18):2305–2310,
August 2019.
[26] Yuma Shimo, Takahiro Mikami, Shino Hamao, Hidenori Goto, Hideki
Okamoto, Ritsuko Eguchi, Shin Gohda, Yasuhiko Hayashi, and Yoshihiro
Kubozono. Synthesis and transistor application of the extremely extended
phenacene molecule, [9]phenacene. Scientific Reports, 6(1):21008, February
2016.
[27] Andrea Basagni, Guillaume Vasseur, Carlo A. Pignedoli, Manuel Vilas-
Varela, Diego Peña, Louis Nicolas, Lucia Vitali, Jorge Lobo-Checa, Dimas G.
de Oteyza, Francesco Sedona, Maurizio Casarin, J. Enrique Ortega, and
Mauro Sambi. Tunable band alignment with unperturbed carrier mobility of
on-surface synthesized organic semiconducting wires. ACS Nano, 10(2):2644–
2651, February 2016.
86
[28] Tobias Huempfner, Martin Hafermann, Christian Udhardt, Felix Otto, Roman
Forker, and Torsten Fritz. Insight into the unit cell: Structure of picene
thin films on ag(100) revealed with complementary methods. J. Chem. Phys.,
145(17):174706, August 2016.
[29] L. Petersen, P. Laitenberger, E. Lægsgaard, and F. Besenbacher. Screening
waves from steps and defects on cu(111) and au(111) imaged with stm: Contribution
from bulk electrons. Phys. Rev. B, 58(11):7361–7366, September
1998.
[30] Qiang Sun, Chi Zhang, Huihui Kong, Qinggang Tan, and Wei Xu. Onsurface
aryl-aryl coupling via selective c-h activation. Chem. Commun.,
50(80):11825–11828, 2014.
[31] Qiang Sun, Chi Zhang, Zhiwen Li, Huihui Kong, Qinggang Tan, Aiguo Hu,
and Wei Xu. On-surface formation of one-dimensional polyphenylene through
bergman cyclization. J. Am. Chem. Soc., 135(23):8448–8451, June 2013.
[32] Tao Wang, Haifeng Lv, Lin Feng, Zhijie Tao, Jianmin Huang, Qitang Fan,
Xiaojun Wu, and Junfa Zhu. Unravelling the mechanism of glaser coupling
reaction on ag(111) and cu(111) surfaces: a case for halogen substituted terminal
alkyne. J. Phys. Chem. C, 122(26):14537–14545, July 2018.
[33] Qiang Sun, Liangliang Cai, Yuanqi Ding, Honghong Ma, Chunxue Yuan, and
Wei Xu. Single-molecule insight into wurtz reactions on metal surfaces. Phys.
Chem. Chem. Phys., 18:2730–2735, 2016.
87
[1] Luning Chen, Xibo Zhang, Xiqing Cheng, Zhaoxiong Xie, Qin Kuang, and
Lansun Zheng. The function of metal–organic frameworks in the application
of mof-based composites. Nanoscale Adv., 2:2628–2647, 2020.
[2] A. Cadiau, K. Adil, P. M. Bhatt, Y. Belmabkhout, and M. Eddaoudi. A metalorganic
framework–based splitter for separating propylene from propane. Science,
353(6295):137–140, 2016.
[3] Jerry Y. S. Lin. Molecular sieves for gas separation. Science, 353(6295):121–
122, 2016.
[4] Bhatt P.M. Chappanda K.N. Tchalala, M.R. Fluorinated mof platform for
selective removal and sensing of so2 from flue gas and air. Nature Communication,
2019.
[5] Zhang Z. Tranca D.C. Dong, R. A coronene-based semiconducting twodimensional
metal-organic framework with ferromagnetic behavior. Nature
Communication, 2018.
[6] Sebastian Stepanow, Nian Lin, and Johannes V Barth. Modular assembly
of low-dimensional coordination architectures on metal surfaces. Journal of
Physics: Condensed Matter, 20(18):184002, apr 2008.
[7] Dirk Kühne, Florian Klappenberger, Régis Decker, Uta Schlickum, Harald
Brune, Svetlana Klyatskaya, Mario Ruben, and Johannes V. Barth. Highquality
2d metalorganic coordination network providing giant cavities within
mesoscale domains. Journal of the American Chemical Society, 131(11):3881–
3883, 2009. PMID: 19256496.
110
[8] Jun Li, Leonid Solianyk, Nico Schmidt, Brian Baker, Stefano Gottardi,
Juan Carlos Moreno Lopez, Mihaela Enache, Leticia Monjas, Ramon van der
Vlag, Remco W. A. Havenith, Anna K. H. Hirsch, and Meike Stöhr. Lowdimensional
metal–organic coordination structures on graphene. The Journal
of Physical Chemistry C, 123(20):12730–12735, 2019.
[9] Nian Lin, Sebastian Stepanow, Franck Vidal, Klaus Kern, Mohammad S.
Alam, Stefan Strömsdörfer, Viacheslav Dremov, Paul Müller, Aitor Landa,
and Mario Ruben. Surface-assisted coordination chemistry and self-assembly.
Dalton Trans., pages 2794–2800, 2006.
[10] Myunghyun Paik Suh, Hye Jeong Park, Thazhe Kootteri Prasad, and Dae-
Woon Lim. Hydrogen storage in metal–organic frameworks. Chemical Reviews,
112(2):782–835, 2012. PMID: 22191516.
[11] Johannes V. Barth. Fresh perspectives for surface coordination chemistry.
Surface Science, 603(10):1533–1541, 2009. Special Issue of Surface Science
dedicated to Prof. Dr. Dr. h.c. mult. Gerhard Ertl, Nobel-Laureate in Chemistry
2007.
[12] Lei Dong, Zi’Ang Gao, and Nian Lin. Self-assembly of metal–organic coordination
structures on surfaces. Progress in Surface Science, 91(3):101–135,
2016.
[13] D. Stacchiola, J. B. Park, P. Liu, S. Ma, F. Yang, D. E. Starr, E. Muller,
P. Sutter, and J. Hrbek. Water nucleation on gold: Existence of a unique
double bilayer. The Journal of Physical Chemistry C, 113(34):15102–15105,
2009.
[14] I Chizhov, A Kahn, and G Scoles. Initial growth of 3,4,9,10-
perylenetetracarboxylic-dianhydride (ptcda) on au(111): a scanning tunneling
microscopy study. Journal of Crystal Growth, 208(1):449–458, 2000.
[15] M. Mura, X. Sun, F. Silly, H. T. Jonkman, G. A. D. Briggs, M. R. Castell,
and L. N. Kantorovich. Experimental and theoretical analysis of h-bonded
supramolecular assemblies of ptcda molecules. Phys. Rev. B, 81:195412, May
2010.
111
[16] Kim J.K. Kovalev Shokova, E.A. 1,3-diketones. synthesis and properties.
Russ J Org Chem, 2015.
[17] Joohee Pradhan and Anju Goyal. -diketones: Important intermediates for
drug synthesis. International Journal of Pharmaceutical Research & Allied
Sciences, 4(2), 2015.
[18] Tiandong Liu, Alan D. Chien, Jiwei Lu, Guoqing Zhang, and Cassandra L.
Fraser. Arene effects on difluoroboron β-diketonate mechanochromic luminescence.
J. Mater. Chem., 21:8401–8408, 2011.
[19] Yuhua Zhang and Chao-Jun Li. Highly efficient direct alkylation of activated
methylene by cycloalkanes, 2007.
[20] Michitaka Mamiya, Yurie Suwa, Hideki Okamoto, and Minoru Yamaji.
Photochemically-assisted synthesis and photophysical properties of difluoroboronated
β-diketones with fused four-benzene-ring chromophores, chrysene
and pyrene. Photochem. Photobiol. Sci., 15:928–936, 2016.
[21] Hung-Hsiang Yang, Yu-Hsun Chu, Chun-I Lu, Tsung-Han Yang, Kai-Jheng
Yang, Chao-Cheng Kaun, Germar Hoffmann, and Minn-Tsong Lin. Digitized
charge transfer magnitude determined by metal–organic coordination number.
ACS Nano, 7(3):2814–2819, 2013. PMID: 23451803.
[22] Karina Morgenstern, Jakob Kibsgaard, Jeppe V. Lauritsen, Erik Lægsgaard,
and Flemming Besenbacher. Cobalt growth on two related close-packed noble
metal surfaces. Surface Science, 601(9):1967–1972, 2007.
[23] V Repain, G Baudot, H Ellmer, and S Rousset. Ordered growth of cobalt
nanostructures on a au(111) vicinal surface: nucleation mechanisms and temperature
behavior. Materials Science and Engineering: B, 96(2):178–187,
2002.
[24] Keiji Doi, Emi Minamitani, Shunji Yamamoto, Ryuichi Arafune, Yasuo
Yoshida, Satoshi Watanabe, and Yukio Hasegawa. Electronic and magnetic
effects of a stacking fault in cobalt nanoscale islands on the ag(111) surface.
Phys. Rev. B, 92:064421, Aug 2015.
112
[25] Youness Benjalal, Jacques Bonvoisin, and Xavier Bouju. Unraveling the
molecular conformations of a single ruthenium complex adsorbed on the
ag(111) surface by calculations. Phys. Chem. Chem. Phys., 21:10022–10027,
2019.
[26] Suchandra Bhattacharjee, Muhammad Imran Khan, Xiaofang Li, Qi-Long
Zhu, and Xin-Tao Wu. Recent progress in asymmetric catalysis and chromatographic
separation by chiral metal–organic frameworks. Catalysts, 8(3),
2018.
[27] Guoqing Lyu, Ran Zhang, Xin Zhang, Pei Nian Liu, and Nian Lin. Onsurface
assembly of low-dimensional pb-coordinated metal–organic structures.
J. Mater. Chem. C, 3:3252–3257, 2015.
113