簡易檢索 / 詳目顯示

研究生: 蔡文發
Wen-Fa Tsai
論文名稱: 高溫及輻射效應對低能量離子佈植的縱深分佈影響研究
The influence of high-temperature and radiation effects on the implant depth profiles at low energy ion implantation
指導教授: 開執中
Ji-Jung Kai
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 215
中文關鍵詞: 高溫離子佈植輻射引發偏析輻射增強擴散輻射效應點缺陷加速器離子佈植
外文關鍵詞: High-temperature ion implantatio, Radiation induced segregation, Radiation enhanced diffusion, Radiation effects, Point defects, Accelerator, Ion implantation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究目的係以輻射引發合金元素偏析(RIS)的理論模式為基礎,發展一套高溫離子佈植理論模式,並以72 keV銅鎳離子佈植系統的實驗數據,以及參考銅鎳合金的RIS參數,進行一系列理論模擬與實驗數據之比較研究,藉以獲得一組最佳銅鎳離子佈植系統的理論模式參數,用以探討銅鎳離子佈植系統的溫度與輻射效應,解決以往高溫離子佈植理論模式因欠缺完整的理論模式參數,以致無法進行理論與實驗比較研究的問題。在理論模式中,佈植離子與點缺陷作用所產生的輻射增強擴散(RED)與輻射引發偏析(RIS)效應,係以一組聯立方程式來描述,而有關晶格擴大效應、優先濺射效應、離子佈植引發差排效應、靶面為完美缺陷陷阱因素,以及空間非均勻性的點缺陷產生率與離子佈植率等等所造成之影響均納入考量。實驗方面,使用清大NEC 9SDH-2 3MV 串級加速器進行72 keV銅離子(5□1015及1□1017 Cu-1 /cm2)佈植鎳靶材與72 keV鎳離子(5□1015 Ni-1/cm2)佈植銅靶材等高溫(200、400及500 □C)離子佈植實驗,並利用二次離子質譜儀來量測佈植離子的縱深分佈。理論模式所需銅鎳離子佈植系統的熱力學參數,則分別以W. Wagner等人[62]及S.H. Han等人[53]所發表的三種銅鎳合金(Ni-10 at. % Cu、Ni-25 at. % Cu及Ni-60 at. % Cu)的RIS參數為基礎,進行一系列理論模擬與實驗數據之比較研究。研究結果發現:由於高溫離子佈植過程中,佈植離子與輻射損傷同時受其位置梯度分佈影響,致使佈植離子的RIS及RED等效應,較一般使用輻射(例如重離子等)照射銅鎳合金所產生的RIS及RED等效應為強;是以,若以輻射照射銅鎳合金所獲得RIS熱力學參數,直接套用於高溫離子佈植理論模式使用,將導致理論模擬結果偏離實驗數據。惟若經由合理調整空缺與填隙原子的再結合率(recombination rate),以降低有效點缺陷產生率,便可將銅鎳合金的RIS熱力學參數套用於高溫離子佈植模式中使用,使理論與實驗結果趨於一致。同時發現以Ni-60 at. % Cu的RIS熱力學參數為基礎的高溫離子佈植理論模式參數,不論佈植劑量之多寡,理論模擬與實驗結果均相當一致。72 keV銅離子佈植鎳靶材的縱深分佈隨靶材溫度增高而明顯展寬,導致靶面銅離子空乏而往靶內擴散現象;而72 keV鎳離子佈植銅靶材之縱深分佈則隨靶材溫度增高而明顯聚集於靶面並往靶內擴散。由此足以證明,高溫離子佈植之輻射效應(RED及RIS)對佈植離子縱深分佈的影響扮演著極為重要的角色。


    The purpose of this study is to experimentally and theoretically investigate the effects of the implant depth profiles on the high temperature ion implantation. In our theoretical modeling, the implanted ions can interact with implantation-production point defects and with extended sinks such as target surface and dislocations. The synthetic effects of radiation enhanced diffusion, radiation induced segregation, and spatially non-uniform point defect production rate were taken into account and cast into a set of coupled partial-differential equations. The effects of preferential sputtering and lattice dilation were also incorporated into the model through an appropriate coordinate transformation. In the experiment, a tandem accelerator was used for implanting 72 keV Cu-1 ions (5□1015 and 1□1017 Cu-1 ions/cm2) into pure nickel target and implanting 72 keV Ni ions (5□1015 Ni-1 ions/cm2) into pure copper target at elevated temperatures (200.400 and 500 □C). The depth profiles of the implanted ions were measured by secondary ion mass spectrometer. The results demonstrated that the theoretical predictions are in good agreement qualitatively with measured ones, and a set of the best-fit parameters for the theoretical model of Cu-Ni implantation system is obtained. In the 72 keV Cu-1 ions implanted into pure nickel materials, the copper depth profiles are broadened with the increase of the implanted fluence and target temperature. In the 72 keV Ni-1 ions implanted into pure copper materials, the nickel depth profiles tend to broaden and surface concentration increase with temperatures. These effects are mainly due to radiation enhanced diffusion and radiation induced solute segregation to the free surface, which are attributed to the point defects generated during ion implantation at elevated temperatures.

    中文摘要 i 英文摘要 iii 致謝 iv 目錄 v 圖目錄 viii 表目錄 xvi 第一章 前言 1 第二章 文獻回顧 8 2.1 高溫離子佈植的實驗現象回顧 8 2.2 離子與物質作用 10 2.2.1 核子能量損失 11 2.2.1.1 離子與原子間相互作用位能 11 2.2.1.2 彈性碰撞動力學 15 2.2.1.3 散射角 17 2.2.1.4 核子阻止截面及核子能量損失偏差 18 2.2.2電子能量損失 20 2.3 離子縱深分佈與輻射損傷分佈 25 2.3.1射程與輻射損傷分佈 26 2.3.2 PKA產生移位原子 32 2.4 離子與輻射損傷分佈的模擬方法 34 2.4.1 蒙地卡羅 35 2.4.2 SRIM模擬軟體 36 2.5 優先濺射效應 37 2.6 晶格擴大效應 42 2.7 離子佈植熱激發效應 43 2.7.1 輻射增強擴散 43 2.7.2 輻射引發偏析 47 2.8高溫離子佈植理論模式 54 第三章 高溫離子佈植之理論模式建立 74 3.1高溫離子佈植理論模式建立 74 3.2 理論模擬結果與文獻中數據比較 82 3.2.1晶格擴大與濺射效應 82 3.2.2 輻射引發偏析效應 83 3.2.2.1 與Wagner等人的RIS理論與實驗數據比較 83 3.2.2.2 高溫離子照射對預先佈植離子縱深分佈之影響 87 3.2.2.3 高溫離子佈植之熱激發效應 88 3.3選用銅鎳離子佈植系統的理論模式參數之問題 90 3.3.1銅鎳組成合金系統之RIS熱力學參數研究 91 3.3.2高溫銅鎳離子佈植理論模式參數 93 第四章 實驗方法 109 4.1 銅及鎳試片準備 109 4.2 72 keV高溫離子佈植設備 110 4.3 二次離子質譜儀 114 4.4 實驗設計動機 117 4.5實驗結果 118 第五章 結果與討論 133 5.1 72 keV銅鎳高溫佈植系統之理論模式參數研究 134 5.1.1 72 keV銅離子縱深分佈的溫度與通量效應之理論與實驗比較 135 5.1.1.1 佈植劑量5□1015 Cu-1 ions/cm2 135 5.1.1.1.1理論分析 135 5.1.1.1.2理論與實驗比較 140 5.1.1.1.3結論 142 5.1.1.2 佈植劑量1□1017 Cu-1 ions/cm2 143 5.1.1.2.1理論分析 143 5.1.1.2.2理論與實驗比較 144 5.1.1.2.3結論 147 5.1.2 72 keV鎳離子縱深分佈的溫度效應之理論與實驗比較 147 5.1.2.1 佈植劑量5□1015 Ni-1 ions/cm2 148 5.1.2.1.1理論分析 149 5.1.2.1.2理論與實驗比較 151 5.1.2.1.3結論 152 5.1.3銅鎳佈植系統之理論模式參數研究之綜合結論 153 5.2銅鎳離子佈植系統的理論模式參數討論 154 5.2.1 四個RIS導出參數 154 5.2.2空缺與填隙原子再結合半徑 154 5.2.3 差排密度 157 5.2.4 點缺陷產生效率□o 158 5.2.5 移位位能 159 5.2.6 空缺與填隙原子產生率之位置分佈差異 161 5.3高溫離子佈植與室溫離子佈植後退火處理之銅離子縱深分佈的差異性 162 第六章 結論 205 第七章 未來研究方向與建議 209 參考文獻 211

    [1] A.D. Marwick and R.C. Piller, Rad. Eff. 47 (1980) 195.
    [2] R.E.J. Watkins, Rad. Eff. 84 (1985) 27.
    [3] R. Schork, P. Pichler, A. KLUGE, and H. Ryssel, Nucl. Instr. and Meth. B59/60(1991)499.
    [4] G.. Dearnaley, Rad. Eff.63(1982)25.
    [5] R. W.ei, P.J. Wilbur. O. Ozturk, and D.L. Williamson. Nucl. Instr. And Meth. B59/60 (1991) 731.
    [6] D.L. Williamson, O. Ozturk, S. Glick, R. Wei, and P.J. Wilbur, Nucl. Instr. And Meth., B59/60 (1991) 737.
    [7] Y. Miyagawa, M Ikeyama, K. Saitoh, S. Nakao, and S. Miyagawa, Surf. Coat. Technol., 83 (1996) 275.
    [8] J.K. Hirvonen and C.R. Clayton, in “surface modification and alloying,” NATO Series on Materials Science, edited by J.M. Poate, G. Foti, and D.C. Jacobson (Plenum, New York, 1983), p323.
    [9] G. Dearnaley, Nucl. Instr. and Meth. B50 (1990) 385.
    [10] H.X. Zhang et al., Rev. Sci. Instrum. B6 (1990) 574.
    [11] T.H. Zhang et al., Surf. Coat. Technol., 51(1992) 455.
    [12] T.H. Zhang et al., Nucl. Instr. and Meth. B59/60 (1991) 828.
    [13] W.L. Lin et al., Surf. Coat. Technol., 51(1992) 534.
    [14] T.H. Zhang et al., Surf. Coat. Technol., 65 (1994) 148.
    [15] T.H. Zhang et al., Nucl. Instr. and Meth. B67 (1992) 458.
    [16] P. Huang, R.F. Hochman, Mater. Sci. Eng. A115 (1985) 257.
    [17] M.K. Lei, L.S. Dai, L.J. Yuan, F.L. Liu, Z.L. Zhang, Mater. Mech. Eng. 19 (1995) 29.
    [18] D.L. Williamson, O. Ozturk, R. Wei, P.J. Wilbur, Surf. Coat. Technol. 65 (1994) 15.
    [19] M.K. Lei, Z.L. Zhang, J. Vac. Sci. Technol. A 13 (1995) 2986.
    [20] W. Miao, K. Tao, B.X. Liu, B. Li, Nucl. Instr. And Meth. B 160 (2000) 343.
    [21] R. Wei, Surf. Coat. Technol., 83 (1996) 218.
    [22] S.G. Bull, A.M. Jones and A.R. McCabe, 9th Int. Conf. SMMIB’95, San Sebastian, Spain (1995) Abstr. 0-30, p. 83.
    [23] H. Zhang, X. Zhang, F. Zhou, Surf. Coat. Technol. 103-104 (1998) 200.
    [24] L. Xianghuai, Surf. Coat. Technol. 131 (2000) 261.
    [25] G.L. Diens and D.C. Damask, J. Appl. Phys. 29 (1958) 1713.
    [26] P.S. Ho, Surf. Sci. 72 (1978) 253.
    [27] A. Miotello and P. Mazoldi, J. Appl. Phys. 54 (1983) 7.
    [28] A.H. Eltoukhy and J.E. Green, J. Appl. Phys. 51 (1988) 4444.
    [29] E. Antoncik, Radiat. Eff. 116 (1991) 375; 127 (1993) 75.
    [30] H.U. Jager, J. Appl. Phys. 78 (1995) 176.
    [31] S.H. Valiev, T.S. Pugacheva, F.G. Jurabekova, S.A. Lem, Y. Miyagawa, Nucl. Instrum. Methods, B 127/128 (1997) 265.
    [32] A.D. Marwick, Nucl. Instr. And Meth. 182/183 (1981) 827.
    [33] D.C. Kothari, V.N. Kulkarni, A. Miotello, L. Guzman, G. Linker, B. Strehlau, Surf. Coat. Technol. 83 (1996) 88.
    [34] P. Sigmund, in “Sputtering by Particle Bombardment,” Vol. 1, edited by R. Behrich(Springer, Heidelberg, 1981)p.9.
    [35] C.M. Davisson, Nucl. Instr. and Meth. B13 (1986) 421.
    [36] H. Kraulte, Nucl, Instr. and Meth. 134(1976) 167.
    [37] R. Sizmann, J. Nucl. Mater. 69/70 (1978) 386.
    [38] Y. Adda, M. Beyeler, and G. Brebec, Thin Solid Films, 25 (1975) 107.
    [39] G.J. Dienes and A.C. Damask, J. Appl. Phys. 29 (1958) 1713.
    [40] K.C. Russel, Proger. Mat. Sci. 28 (1984) 229.
    [41] T.R. Anthony, “ Radiation Induced Voids in Metals,” (1971) p. 630.
    [42] R. A. Johnson and N. Q. Lam, Phys. Rev. B 13 (1976) 4364.
    [43] R. A. Johnson and N. Q. Lam, Phys. Rev. B 15 (1977) 1794.
    [44] N.Q. Lam, P. R. Okamoto, and R.A. Johnson, J. Nucl. Mater. 78 (1978) 408.
    [45] P.R. Okamoto, L.E. Rehn, and R.S. Averback, J. Nucl. Mater. 108/109 (1982) 319.
    [46] J.R. Manning, Bull. Am. Phys. Soc. 23 (1978) 287.
    [47] J.R. Manning, “ Phase Stability During Irradiation,” 1981, p. 3.
    [48] H. Wiedersich, P.R. Okamoto, and N.Q. Lam, J. Nucl. Mater. 83 (1979) 98.
    [49] N. Q. Lam and G..K. Leaf, J. Mater. Res. (1986) 251.
    [50] N.Q. Lam and H. Wiedersich, Nucl. Instr. And Meth. B 18 (1987) 471.
    [51] A.M. Yacout, N.Q. Lam, J.F. Stubbins, Nucl. Instr. And Meth. B 59/60 (1991) 57.
    [52] S.H. Han, G.L. Kulcinski, and J.R. Conard. Nucl. Instr. and Meth. B45 (1990) 701.
    [53] S.H. Han, Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin(1988).
    [54] J.H. Liang, Ph.D. Thesis, University of Wisconsin, Madison, Wisconsin(1989).
    [55] H.W. Chang and M.K. Lei, Computer Material Science, 33 (2005) 459.
    [56] I.F. Ziegler and J.P. Biersack, SRIM: The Sopping and Range of Ions in Matter, Version 96.07(IBM-Research, Yorktown,1996).
    [57] A.C. Hindmarsh, in Scientific Computing, edited by R.S. Stepleman, M Carver, R. Peskin, M.F. Ames, and R. Vichnevetsky(North-Holland, Amsterdam, 1983)p. 55.
    [58] R. Poerschke and H. Wollenberger, Thin Solid Films, 25 (1975) 167.
    [59] R. Poerschke and H. Wollenberger, Radiat. Eff. 24 (1975) 217; 49 (1980) 225.
    [60] W. Wagner, R. Poerschke, A. Axman, and D. Schwahn, Phys. Rev. B 21 (1980) 3087.
    [61] W. Wagner, R. Poerschke and H. Wollenberger, J. Phys. F 12 (1982) 405.
    [62] W. Wagner, L.E. Rehn, H. Wiedersich and V. Naundorf, Phys. Rev. B 28 (1983) 6780.
    [63] V. Naundorf, “ Measurement of Radiation Induced Impurity Diffusion in Copper ,” p. 934, in “Point Defects and Defect Interactions in Metals, ”edited by J. I. Takamura, M. Doyama, and M. Kiritani, North-Holland Publishing Company, Amsterdam(1982).
    [64] R.W. Siehel, “ Atomic Defects and diffusion in Metal ,” p. 533, in “Point Defects and Defect Interactions in Metals,” edited by J.I. Takamura, M. Doyama, and M. Kiritani.(North-Holland publishing company, Amsterdam, 1982).
    [65] S. Fujikawa, “ Self-Diffusion of Cu in Copper”, p. 554, in “Point Defects and Defect Interactions in Metals,” edited by J.I. Takamura, M. Doyama, and M. Kiritani.(North-Holland publishing company, Amsterdam, 1982).
    [66] M. Born and J. E. Mayer, Z. Phys. 75 (1932) 1.
    [67] L. H. Thomas, Proc. Camb. Phil. Soc. 23 (1926) 542.
    [68] E. Fermi, Z. f. Physik 48 (1928) 73.
    [69] M. Nastsai, J.W. Mayer, J.K. Hirvonen, “Ion-Solid interaction: fundamentals and applications,” (Cambridage University Press, Cambridage, 1996) p. 503.
    [70] A. Sommerfeld, Z. f. Physik 78 (1932) 283.
    [71] N. H. March, Proc, Camb. Phil. Soc. 46 (1950) 356.
    [72] G. Moliere, Z. f. Naturforsch A2 (1947) 133.
    [73] W. Lens, Z. f. Physik77 (1932) 713.
    [74] H. Jensens, Z, Physik77 (1932) 722.
    [75] O.B. Firsov, Zh. Eksp. Teor. Fiz. 32 (1957) 1464.
    [76] J. Lindhard, V. Nielsen, and M. Scharff, Mat. Fys. Medd. Dan. Vid Selsk. 10 (1968) 36.
    [77] J. F. Z.iegler, J. P. Biersack, and U. Littmark, “Stopping and Range of Ions in Solids,” Vol. 1 (Pergamon Press, New York, 1985).
    [78] M. Nastsai, J.W. Mayer, J.K. Hirvonen, “Ion-Solid interaction: fundamentals and applications,” (Cambridage University Press, Cambridage, 1996) p. 58.
    [79] O.B. Firsov, JETP.7 (1958) 308.
    [80] J. P. Biersack and L.G. Haggmark, Nucl. Instr. and Meth. 174 (1980) 257.
    [81] J. Lindhard, V. Nielsen and M. Scharff, Mat. Fys. Medd. Dan. Vid. Selsk. 10 (1968) 36.
    [82] N. Bohr, Phil. Mag. 25 (1913) 10.
    [83] N. Bohr, Phil. Mag. 25 (1915) 581.
    [84] H. A. Bethe, Ann. Phys. 5 (1930) 325.
    [85] H. A. Bethe, Z. Phya,76 (1932) 293.
    [86] H. A. Bethe, Rev. Mod. Phys. 22 (1950) 213.
    [87] N. Bohr. Phys. Rev. 58 (1940) 654.
    [88] N. Bohr. Phys. Rev. 59 (1941) 270.
    [89] J. Lindhard, M. Scarff, H. E. Schiot, K. Dan. Vidensk. Selsk., Mat. Fys. Medd. 33, No. 14(1963).
    [90] G. H. Kinchin and R.S. Pease, Rep. Phys. 18 (1955) 1.
    [91] W. S. Snyder and J.S. Neufeld, Phys. Rev.97 (1955) 1926.
    [92] W. S. Snyder and J.S. Neufeld, Phys. Rev.97 (1955) 1636.
    [93] J. Lindhard, V. Nielsen, M. Scharff, and P. V. Thomsen, K. Dan. Vidensk. Selsk., Mat. Fys. Mell. 33, No. 10(1963).
    [94] M. T. Robinson, “Nuclear Fission Reactors,” British Nuclear Energy Society, London, p. 364(1970).
    [95] M. Eckstein, “Computer Simulation of Ion-Solid Interactions,” (Spring-Verlag, Berlin, 1991).
    [96] Robinson, M. T. and I.M.Torrens, Phys. Rev. B9 (1974) 5008.
    [97] P. Sigmund, in “Sputtering in Paricle Bomdbardment I,” edited by R. Behrisch, Spinger-Verlag Berlin Heidelberg, 8(1981).
    [98] J. Roth, in “Symposium on Sputtering,” edited by P. Varga, and F. P. Vienbock, Inst. Allgem, Physik, Vienna, 733(1980).
    [99] P. Sigmund, Phys. Rev. 14 (1969) 383.
    [100] D. A. Thompson, Rad. Eff. 56 (1981) 104.
    [101] N. Matsunami et al., “Energy Dependence of Sputtering Yields of Monatomic Solids,” Nagoya University Report IPPJ-AM-14(1980).
    [102] N. Matsunami et al., “Energy Dependence of Ion-Induced Sputtering Yields of Monatomic Solids in the Low Energy Region,” Nagoya University Report IPPJ-AM-52(1987).
    [103] J. Bohdansky, Nucl. Instr. And Meth. B2 (1984) 587.
    [104] J. Bohdansky, IAEA, Vienna, 61(1984).
    [105] D. Rosenberg and G. K. Wehner, J. Appl. Phys. 33 (1962) 1842.
    [106] H. Ohtsuka et al., J. Nucl. Mat. 76/77 (1978) 188.
    [107] C. R. Finfgeld, “Proton Sputtering,”ORO-3557-15(1975).
    [108] O. Almen and G. Bruce, Nucl. Instr. and Meth. 11 (1961) 279.
    [109] K. Sone et al., Proc. Int, Symp. Plasma-Wall Interaction, Pergamon Press, London, 323(1977).
    [110] D. Farkas, I. L.Singer, and M. Rangaswamy, J. Appl. Phys. 57 (1985) 1114.
    [111] H. Wiedersich, N.Q. Lam, in “Phase transformation during irradiation,” ( edited by Frank V. Nolfi, Jr), Applied Science Publisher, London and New York (1983).
    [112] L.E. Rehn and P.O. Okamoto, in “Phase transformations during irradiation,” (1983).
    [113] R. Lennartz, F. Dworschak, and H. Wollenberger, J. Phys. F 7 (1977) 2011.
    [114] N.Q. Lam, H.A. Hoff, H. Wiedersich and L.E. Rehn, Surface Science, 149 (1985) 517.
    [115] M.W. Thompson, “Defects and Radiation Damage in Metals,” (Cambridage University Press, 1969)
    [116] D.L. Williamson, J.A. Davis, P.J. Wilbur, J.J. Vajo, R. Wei, J.N. Matossian, Nucl. Instr. and Meth. B 127/128 (1997) 930.
    [117] S. Parascandola, R. Gunzel, R. Grotzschel, E. Ritchter, W. Moller, Nucl. Instr. and Meth. B 136-138 (1998) 1281.
    [118] P.D. Parry, J. Vac. Sci. Technol. B 12 (1994) 875.
    [119] J.P. Blanchard, J. Vac. Sci. Technol. B 12 (1994) 910.
    [120] X. Tian and P.K. Chu, J. Phys.D: Appl. Phys. 34 (2001) 1639.
    [121] H.S. Carslaw and J.C. Jaeger, “Conduction of Heat in Solids,” (Oxford University Press, Oxford, 1959), p. 75.
    [122] M.W. Chase et al., JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, 14, Suppl. 1, 1985.
    [123] M. Nastsai, J.W. Mayer, J.K. Hirvonen, “Ion-Solid interaction: fundamentals and applications, ” (Cambridage University Press, Cambridage, 1996) p. 146.
    [124] W. Eckstein, “Computer Simulation of Ion-Solid Interactions,” Springer, Berlin, 1991.
    [125] P. Pichler and R. Schork, “Radiation Effects and Defects in Solids,” V 127 (1991) p. 367.
    [126] King et al., J. Nucl. Mater. 117 (1983) 12.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE