簡易檢索 / 詳目顯示

研究生: 林志修
Lin, Zhi-Xiu
論文名稱: 鎳鈷氧化物水熱合成參數之最佳化與在可撓式鋅空氣電池之應用
Hydrothermal Synthesis Parameter Optimization of NiCo2O4 and its Application to Flexible Zinc Air Batteries
指導教授: 胡啟章
Hu, Chi-Chang
口試委員: 劉英麟
Liu, Ying-Ling
陳翰儀
Chen, Han-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 125
中文關鍵詞: 鋅空氣電池雙效催化劑可撓式電池膠態電解質尖晶石氧化物
外文關鍵詞: Zinc Air Battery, Bifunctional Catalyst, Flexible Battery, Gel Electrolyte, Spinel Oxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著環保意識抬頭,傳統內燃機以及火力發電所造成的空氣汙染也逐漸受到重視,尋找下一代可應用於電動汽車以及大型儲電網的儲能裝置成為重要的研究方向。鋅空氣電池因其高能量密度、原料可取得性、高電壓而成為潛在的人選。然而,鋅空氣電池目前也存在著一些問題:鋅極晶枝、雙效催化劑材料等。在雙效催化劑部分,鎳鈷系尖晶石氧化物(NiCo2O4)獲得極大的關注。
    本研究有兩個部分。第一部分本研究採用部分因素設計法對前驅物價數、水熱合成溫度、熱處理時間以及熱處理溫度進行參數的最佳化。接著,使用最佳化參數合成出觸媒,並使用旋轉盤環電極進行基礎的電化學性質量測。
    接著,本研究使用最佳化參數合成之NiCo2O4,組成全電池進行穩定性以及電流掃描計時電位法的測試。在穩定性測試中,電池在10 mAcm-2的電流密度下能夠穩定運作超過60小時且無明顯的老化現象。在電流掃描計時電位法測試中,在截止電壓0.4V下,電池能夠工作的最大電流密度為425 mAcm-2;而在電流密度322 mAcm-2時,電池有最大功率密度186.44 mWcm-2。
    在第二部分,本研究嘗試使用PVA作為膠態電解質基材組成可撓式鋅空氣電池,並使用最佳化觸媒作為空氣極催化劑。試著透過改善膠態電解質製程以及添加PAAK改善電池表現。
    雖然最後結果顯示改善製程以及添加PAAK對電化學性質無明顯差異,本研究仍取得一些初步的成果。本研究成功製備出導電度達到60 mS/cm之膠態電解質。膠態電解質組裝之可撓電池在10 mA/cm2的電流密度下(20分鐘一個循環)充放電循環壽命約可達到30小時。極化曲線顯示最大電流密度約為90 mA/cm2,最大功率密度約為60 mW/cm2。電池容量則在1 mA/cm2以及10 mA/cm2的電流密度下皆可達到35 mAh/cm2。另外,本研究組成之可撓電池經過實測能夠在0度和90度間反覆彎折並持續充放電,可看出其優越的可撓性。


    With the rising environmental awareness, the air pollution caused by traditional internal combustion engines and thermal power plants has gradually gained attention. A lot of research is invested in finding the next generation of energy storage devices applied to electric vehicles and large-scale power storage systems. Zinc air batteries are potential candidates because of their high energy density, availability of raw materials and the high voltage. However, there are some issues with zinc air batteries like zinc dendrite growth and bifunctional catalyst materials. In searching for the bifunctional catalyst materials, spinel nickel cobalt oxide has received great attention.
    There are two parts in this study. In the first part, we focus on the optimization of hydrothermal synthesis parameters such as precursor valence states, hydrothermal synthesis temperature, calcination time and temperature by using fractional factorial design. Then, with the optimized parameters, we synthesized the catalyst and did some electrochemical measurements using a rotating ring disk electrode.
    Next, this study fabricated full zinc air batteries using the parameter optimized NiCo2O4. The cyclability and battery performance were also tested by CP and CPCR. In the cyclability test, the battery can stably cycle for more than 60 hours at a current density of 10 mAcm-2 without significant decay. In the CPCR test, the battery can operate at a maximum current density of 425 mAcm-2 with the cutoff voltage being 0.4 V. The maximum power density is 186.44 mWcm-2 at a current density of 322 mAcm-2.
    In the second part, this study fabricates flexible zinc-air batteries with the optimized catalyst and PVA being the gel electrolyte substrate. We try to improve the battery performance by changing the gel electrolyte preparing process and adding PAAK as the additive.
    Although the final results showed no significant differences as mentioned above, this study still achieved some preliminary results. In this study, a gel electrolyte with the conductivity of 60 mS/cm was successfully prepared. The flexible battery assembled with the gel electrolyte can reach a cycle life of about 30 hours with the current density being 10mA/cm2 for 20-minute cycle. The polarization curve shows that the maximum current density is about 90 mA/cm2 and the maximum power density is about 60 mW/cm2. The battery capacity can reach 35 mAh/cm2 at both current densities of 1 mA/cm2 and 10 mA/cm2. In addition, the flexible batteries can be repeatedly bent between 0 degree and 90 degrees and continuously charged and discharged, which shows its superior flexibility.

    摘要 I Abstract III 謝誌 V 圖目錄 IX 表目錄 XII 第一章 緒論及文獻回顧 1 1-1 鋅空氣電池 1 1-1-1 前言 1 1-1-2 金屬空氣電池簡介 2 1-1-3 鋅空氣電池基本工作原理以及挑戰 5 1-2 用於可充式鋅空氣電池催化劑簡介 8 1-2-1 二次鋅空氣電池氧氣還原反應(ORR)及氧氣產生反應(OER) 8 1-2-2 雙效催化劑 10 1-3 尖晶石氧化物 14 1-3-1 尖晶石氧化物介紹 14 1-3-2 尖晶石鎳鈷氧化物 15 1-4 常見電池組裝方式 17 1-4-1 常規平面(Conventional Planar)結構 17 1-4-2 液流電池(Flow Battery) 18 1-4-3 可撓式電池(Flexible Battery) 19 1-4-4 電池組(Multi-Cell Configuration) 21 1-4-5 二極式與三極式組裝 23 1-5 實驗設計(Design of Experiments, DOE)法 25 1-5-1 實驗設計法簡介 25 1-5-2 全因素設計法與部分因素設計法 26 1-6 研究動機與研究大綱 28 第二章 實驗方法、步驟與儀器 30 2-1 儀器與藥品 30 2-2 水熱法製備NiCo2O4 33 2-2-1 25-1部分因素設計 33 2-2-2 實驗步驟 34 2-3 電化學分析 37 2-3-1 旋轉盤電極(Rotating Disk Electrode, RDE)基本原理 37 2-3-2 旋轉盤-環電極(Rotating Ring-Disk Electrode, RRDE)基本原理 39 2-3-3 RRDE觸媒塗佈與相關數據處理 41 2-3-4 循環伏安法(Cyclic Voltammetry, CV) 42 2-3-5 線性伏安掃描(Linear Sweep Voltammetry, LSV) 42 2-3-6 塔弗圖(Tafel plot) 43 2-3-7 全電池測試與測試前處理 44 2-4 可撓式鋅空氣電池 46 2-4-1 PVA膠態電解質製備 46 2-4-2 可撓式電池電化學量測 47 2-5 材料分析儀器簡介 50 2-5-1 X光繞射分析(X-Ray Diffraction Analysis, XRD) 50 2-5-2 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 50 2-5-3 比表面積與孔徑分析(Surface Area and Porosity Analyzer) 51 2-5-4 感應耦合電漿質譜儀(Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 53 2-5-5 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 54 2-5-6 傅立葉紅外光譜(Fourier Transform Infrared Spectroscopy, FTIR) 54 2-5-7 熱重分析(Thermogravimetric Analysis, TGA) 55 第三章 最佳化水熱合成NiCo2O4之參數 57 3-1 部分因子設計 57 3-1-1 循環伏安(CV)結果 57 3-1-2 線性掃描伏安法分析ORR催化效果 59 3-1-3 線性掃描伏安法與塔弗斜率分析OER催化效果 61 3-1-4 計算出最佳合成參數並驗證 63 3-1-5 實驗設計結果討論 68 3-2 材料分析 70 3-2-1 XRD結果分析 70 3-2-2 SEM結果分析 71 3-2-3 XPS結果分析 72 3-2-4 ICP-MS測試結果 77 3-2-5 比表面積與孔徑分布測試結果 78 3-3 鋅空氣電池全電池測試 80 3-3-1 充放電極化曲線 80 3-3-2 穩定性(Cyclability)測試 82 第四章 NiCo2O4觸媒應用於可撓式鋅空氣電池 86 4-1 探討冷凍次數影響 86 4-1-1 導電度測試 86 4-1-2 穩定性(cyclability)測試 87 4-1-3 電池容量(capacity)測量 89 4-2 添加保水劑影響 92 4-2-1 導電度測試 92 4-2-2 充放電極化曲線 93 4-2-3 穩定性(cyclability)測試 97 4-2-4 電池容量(capacity)測量 103 4-2-5 可撓度測試 106 4-3 高分子材料鑑定 109 4-3-1 FTIR鑑定結果 109 4-3-2 TGA鑑定結果 111 第五章 結論與未來展望 114 5-1 結論 114 5-2 未來展望 117

    [1] C. Breyer and A. Gerlach, "Global overview on grid‐parity," Progress in photovoltaics: Research and Applications, vol. 21, no. 1, pp. 121-136, 2013.
    [2] L. H. Munoz, J. Huijben, B. Verhees, and G. Verbong, "The power of grid parity: A discursive approach," Technological Forecasting and Social Change, vol. 87, pp. 179-190, 2014.
    [3] B. Propfe, D. Kreyenberg, J. Wind, and S. Schmid, "Market penetration analysis of electric vehicles in the German passenger car market towards 2030," International Journal of Hydrogen Energy, vol. 38, no. 13, pp. 5201-5208, 2013.
    [4] E. Shafiei, H. Thorkelsson, E. I. Ásgeirsson, B. Davidsdottir, M. Raberto, and H. Stefansson, "An agent-based modeling approach to predict the evolution of market share of electric vehicles: A case study from Iceland," Technological Forecasting and Social Change, vol. 79, no. 9, pp. 1638-1653, 2012.
    [5] M. A. Rahman, X. Wang, and C. Wen, "High energy density metal-air batteries: a review," Journal of The Electrochemical Society, vol. 160, no. 10, pp. A1759-A1771, 2013.
    [6] S. Narayanan, G. S. Prakash, A. Manohar, B. Yang, S. Malkhandi, and A. Kindler, "Materials challenges and technical approaches for realizing inexpensive and robust iron–air batteries for large-scale energy storage," Solid State Ionics, vol. 216, pp. 105-109, 2012.
    [7] X. Ren and Y. Wu, "A low-overpotential potassium–oxygen battery based on potassium superoxide," Journal of the American Chemical Society, vol. 135, no. 8, pp. 2923-2926, 2013.
    [8] P. Hartmann et al., "A rechargeable room-temperature sodium superoxide (NaO 2) battery," Nature materials, vol. 12, no. 3, p. 228, 2013.
    [9] J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler, and Z. Chen, "Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives," Advanced materials, vol. 29, no. 7, p. 1604685, 2017.
    [10] J. S. Lee et al., "Metal‐Air Batteries: Metal–Air Batteries with High Energy Density: Li–Air versus Zn–Air (Adv. Energy Mater. 1/2011)," Advanced Energy Materials, vol. 1, no. 1, pp. 2-2, 2011.
    [11] J. Muldoon, C. B. Bucur, and T. Gregory, "Quest for nonaqueous multivalent secondary batteries: magnesium and beyond," Chemical reviews, vol. 114, no. 23, pp. 11683-11720, 2014.
    [12] D. Linden, Linden's Handbook of batteries. McGraw-Hill, 2010.
    [13] A. Appleby, J. Jacquelin, and J. Pompon, "Charge-Discharge Behavior of the CGE Circulating Zinc-Air Vehicle Battery," SAE Technical Paper, 0148-7191, 1977.
    [14] P. A. Khan and B. Venkatesh, "Economic Analysis of Chemical Energy Storage Technologies," in Smart City 360°: Springer, 2016, pp. 277-291.
    [15] S. Guo, S. Zhang, and S. Sun, "Tuning nanoparticle catalysis for the oxygen reduction reaction," Angewandte Chemie International Edition, vol. 52, no. 33, pp. 8526-8544, 2013.
    [16] L. Jörissen, "Bifunctional oxygen/air electrodes," Journal of Power Sources, vol. 155, no. 1, pp. 23-32, 2006.
    [17] H. B. Yang et al., "Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst," Science advances, vol. 2, no. 4, p. e1501122, 2016.
    [18] J. Zhang, Z. Zhao, Z. Xia, and L. Dai, "A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions," Nature nanotechnology, vol. 10, no. 5, p. 444, 2015.
    [19] J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, and L. Dai, "N, P‐codoped carbon networks as efficient metal‐free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions," Angewandte Chemie International Edition, vol. 55, no. 6, pp. 2230-2234, 2016.
    [20] K. Kinoshita, Electrochemical oxygen technology. John Wiley & Sons, 1992.
    [21] R. Cao, J. S. Lee, M. Liu, and J. Cho, "Recent progress in non‐precious catalysts for metal‐air batteries," Advanced Energy Materials, vol. 2, no. 7, pp. 816-829, 2012.
    [22] X. Ge et al., "ACS Catal. 2015, 5, 4643," Crossref, CAS.
    [23] H. He, Y. Lei, C. Xiao, D. Chu, R. Chen, and G. Wang, "Molecular and electronic structures of transition-metal macrocyclic complexes as related to catalyzing oxygen reduction reactions: a density functional theory study," The Journal of Physical Chemistry C, vol. 116, no. 30, pp. 16038-16046, 2012.
    [24] R. Cao et al., "Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst," Nature communications, vol. 4, p. 2076, 2013.
    [25] J. Sunarso, A. A. Torriero, W. Zhou, P. C. Howlett, and M. Forsyth, "Oxygen reduction reaction activity of La-based perovskite oxides in alkaline medium: a thin-film rotating ring-disk electrode study," The Journal of Physical Chemistry C, vol. 116, no. 9, pp. 5827-5834, 2012.
    [26] K. Qu, Y. Zheng, S. Dai, and S. Z. Qiao, "Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution," Nano Energy, vol. 19, pp. 373-381, 2016.
    [27] L. Trotochaud and S. W. Boettcher, "Precise oxygen evolution catalysts: Status and opportunities," Scripta Materialia, vol. 74, pp. 25-32, 2014.
    [28] T. Reier, M. Oezaslan, and P. Strasser, "Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials," Acs Catalysis, vol. 2, no. 8, pp. 1765-1772, 2012.
    [29] M. S. Burke, L. J. Enman, A. S. Batchellor, S. Zou, and S. W. Boettcher, "Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy) hydroxides: activity trends and design principles," Chemistry of Materials, vol. 27, no. 22, pp. 7549-7558, 2015.
    [30] A. Tseung and S. Jasem, "Oxygen evolution on semiconducting oxides," Electrochimica Acta, vol. 22, no. 1, pp. 31-34, 1977.
    [31] X. Lu and C. Zhao, "Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes," Journal of Materials Chemistry A, vol. 1, no. 39, pp. 12053-12059, 2013.
    [32] C. Zhu et al., "Nickel cobalt oxide hollow nanosponges as advanced electrocatalysts for the oxygen evolution reaction," Chemical Communications, vol. 51, no. 37, pp. 7851-7854, 2015.
    [33] T. Otagawa and J. M. Bockris, "Lanthanum nickelate as electrocatalyst: oxygen evolution," Journal of The Electrochemical Society, vol. 129, no. 10, pp. 2391-2392, 1982.
    [34] Z.-L. Wang, D. Xu, J.-J. Xu, and X.-B. Zhang, "Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes," Chemical Society Reviews, vol. 43, no. 22, pp. 7746-7786, 2014.
    [35] D. U. Lee, P. Xu, Z. P. Cano, A. G. Kashkooli, M. G. Park, and Z. Chen, "Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal–air batteries," Journal of Materials Chemistry A, vol. 4, no. 19, pp. 7107-7134, 2016.
    [36] J. Han, X. Meng, L. Lu, J. Bian, Z. Li, and C. Sun, "Single‐Atom Fe‐Nx‐C as an Efficient Electrocatalyst for Zinc–Air Batteries," Advanced Functional Materials, vol. 29, no. 41, p. 1808872, 2019.
    [37] D. Deng et al., "NiCo alloy nanoparticles encapsulated in multi-dimensional N-doped carbon architecture as efficient bifunctional catalyst for rechargeable zinc-air batteries," Journal of Alloys and Compounds, vol. 797, pp. 1041-1049, 2019.
    [38] L. Wan et al., "Controlled synthesis of bifunctional NiCo2O4@ FeNi LDH core-shell nanoarray air electrodes for rechargeable zinc-air batteries," ACS Sustainable Chemistry & Engineering, 2020.
    [39] W. Liu et al., "NiCo2O4 ultrathin nanosheets with oxygen vacancies as bifunctional electrocatalysts for Zn-air battery," Applied Surface Science, vol. 478, pp. 552-559, 2019.
    [40] Y. Li et al., "Flower-like NiCo2O4–CN as efficient bifunctional electrocatalyst for Zn-Air battery," Electrochimica Acta, p. 135997, 2020.
    [41] Y. Li et al., "Shape‐Controlled Synthesis of NiCo2O4‐rGO as Bifunctional Electrocatalyst for Zn‐Air Battery," ChemElectroChem, vol. 6, no. 17, pp. 4429-4436, 2019.
    [42] L. An et al., "Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature," Angewandte Chemie International Edition, vol. 58, no. 28, pp. 9459-9463, 2019.
    [43] Z. Zhang et al., "Interfacial Engineering of NiO/NiCo2O4 Porous Nanofibers as Efficient Bifunctional Catalysts for Rechargeable Zinc–Air Batteries," ACS Applied Materials & Interfaces, 2020.
    [44] J. Bian et al., "Nitrogen-doped NiCo2O4 microsphere as an efficient catalyst for flexible rechargeable Zinc–Air batteries and self-charging power system," ACS Applied Energy Materials, vol. 2, no. 3, pp. 2296-2304, 2019.
    [45] X. Xiao et al., "Robust assembly of urchin-like NiCo2O4/CNTs architecture as bifunctional electrocatalyst in Zn-Air batteries," Ceramics International, vol. 46, no. 5, pp. 6262-6269, 2020.
    [46] B. Issa, I. M. Obaidat, B. A. Albiss, and Y. Haik, "Magnetic nanoparticles: surface effects and properties related to biomedicine applications," International journal of molecular sciences, vol. 14, no. 11, pp. 21266-21305, 2013.
    [47] J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, and L. Guo, "Surface structure dependent electrocatalytic activity of Co 3 O 4 anchored on graphene sheets toward oxygen reduction reaction," Scientific reports, vol. 3, p. 2300, 2013.
    [48] M. Prabu, K. Ketpang, and S. Shanmugam, "Hierarchical nanostructured NiCo 2 O 4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries," Nanoscale, vol. 6, no. 6, pp. 3173-3181, 2014.
    [49] W. Hong, H. Li, and B. Wang, "A Horizontal Three-Electrode Structure for Zinc-Air Batteries with Long-Term Cycle Life and High Performance," International Journal of Electrochemical Science, vol. 11, pp. 3843-3851, 2016.
    [50] H. Ma, B. Wang, Y. Fan, and W. Hong, "Development and characterization of an electrically rechargeable zinc-air battery stack," energies, vol. 7, no. 10, pp. 6549-6557, 2014.
    [51] M. G. Park, D. U. Lee, M. H. Seo, Z. P. Cano, and Z. Chen, "3D ordered mesoporous bifunctional oxygen catalyst for electrically rechargeable zinc–air batteries," Small, vol. 12, no. 20, pp. 2707-2714, 2016.
    [52] P.-C. Li, Y.-J. Chien, and C.-C. Hu, "Novel configuration of bifunctional air electrodes for rechargeable zinc–air batteries," Journal of Power Sources, vol. 313, pp. 37-45, 2016.
    [53] M. Skyllas-Kazacos, M. Chakrabarti, S. Hajimolana, F. Mjalli, and M. Saleem, "Progress in flow battery research and development," Journal of The Electrochemical Society, vol. 158, no. 8, pp. R55-R79, 2011.
    [54] J. Cheng, L. Zhang, Y.-S. Yang, Y.-H. Wen, G.-P. Cao, and X.-D. Wang, "Preliminary study of single flow zinc–nickel battery," Electrochemistry Communications, vol. 9, no. 11, pp. 2639-2642, 2007.
    [55] S. Amendola et al., "Electrically rechargeable, metal-air battery systems and methods," ed: Google Patents, 2013.
    [56] C. A. Friesen, R. Krishnan, and G. Friesen, "Electrochemical cell with spacers for flow management system," ed: Google Patents, 2013.
    [57] A. M. Gaikwad, G. L. Whiting, D. A. Steingart, and A. C. Arias, "Highly flexible, printed alkaline batteries based on mesh‐embedded electrodes," Advanced materials, vol. 23, no. 29, pp. 3251-3255, 2011.
    [58] J. Fu et al., "Flexible Rechargeable Zinc‐Air Batteries through Morphological Emulation of Human Hair Array," Advanced Materials, vol. 28, no. 30, pp. 6421-6428, 2016.
    [59] Y.-J. Wang, J. Qiao, R. Baker, and J. Zhang, "Alkaline polymer electrolyte membranes for fuel cell applications," Chemical Society Reviews, vol. 42, no. 13, pp. 5768-5787, 2013.
    [60] D. U. Lee, J. Y. Choi, K. Feng, H. W. Park, and Z. Chen, "Advanced Extremely Durable 3D Bifunctional Air Electrodes for Rechargeable Zinc‐Air Batteries," Advanced Energy Materials, vol. 4, no. 6, p. 1301389, 2014.
    [61] X. Fan et al., "Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries," Nano Energy, vol. 56, pp. 454-462, 2019.
    [62] M. Li et al., "Long-shelf-life polymer electrolyte based on tetraethylammonium hydroxide for flexible zinc–air batteries," ACS applied materials & interfaces, vol. 11, no. 32, pp. 28909-28917, 2019.
    [63] G. Wu, S. Lin, and C. Yang, "Alkaline Zn-air and Al-air cells based on novel solid PVA/PAA polymer electrolyte membranes," Journal of Membrane Science, vol. 280, no. 1-2, pp. 802-808, 2006.
    [64] O. Haas, F. Holzer, K. Müller, and S. Müller, "Metal/air batteries: the zinc/air case," Handbook of Fuel Cells, 2010.
    [65] W. Vielstich, A. Lamm, and H. A. Gasteiger, Handbook of fuel cells: fundamentals technology and applications. Wiley New York, 2003.
    [66] Y. Li et al., "Advanced zinc-air batteries based on high-performance hybrid electrocatalysts," Nature communications, vol. 4, p. 1805, 2013.
    [67] D. C. Montgomery, Design and analysis of experiments. John wiley & sons, 2017.
    [68] 胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
    [69] S. J. Lee, S. I. Pyun, S. K. Lee, and S. J. L. Kang, "Fundamentals of Rotating Disc and Ring–Disc Electrode Techniques and their Applications to Study of the Oxygen Reduction Mechanism at Pt/C Electrode for Fuel Cells," Israel Journal of Chemistry, vol. 48, no. 3‐4, pp. 215-228, 2008.
    [70] D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.
    [71] J. Wang, T. Qiu, X. Chen, Y. Lu, and W. Yang, "Hierarchical hollow urchin-like NiCo2O4 nanomaterial as electrocatalyst for oxygen evolution reaction in alkaline medium," Journal of Power Sources, vol. 268, pp. 341-348, 2014.
    [72] A. Angelo, E. Gonzalez, and L. Avaca, "Mechanistic studies of the oxygen reactions on NiCo2O4 spinel and the hydrogen evolution reaction on amorphous Ni Co sulphide," International journal of hydrogen energy, vol. 16, no. 1, pp. 1-7, 1991.
    [73] B. Chi, J. Li, Y. Han, and Y. Chen, "Effect of temperature on the preparation and electrocatalytic properties of a spinel NiCo2O4/Ni electrode," International journal of hydrogen energy, vol. 29, no. 6, pp. 605-610, 2004.
    [74] R. Ding, L. Qi, M. Jia, and H. Wang, "Sodium dodecyl sulfate-assisted hydrothermal synthesis of mesoporous nickel cobaltite nanoparticles with enhanced catalytic activity for methanol electrooxidation," Journal of Power Sources, vol. 251, pp. 287-295, 2014.
    [75] J. Marco, J. Gancedo, M. Gracia, J. Gautier, E. Rios, and F. Berry, "Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study," Journal of Solid State Chemistry, vol. 153, no. 1, pp. 74-81, 2000.
    [76] Y.-T. Lu, Y.-J. Chien, C.-F. Liu, T.-H. You, and C.-C. Hu, "Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M 0.1 Ni 0.9 Co 2 O 4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc–air batteries," Journal of Materials Chemistry A, vol. 5, no. 39, pp. 21016-21026, 2017.
    [77] Z.-Q. Liu et al., "Facile hydrothermal synthesis of urchin-like NiCo2O4 spheres as efficient electrocatalysts for oxygen reduction reaction," international journal of hydrogen energy, vol. 38, no. 16, pp. 6657-6662, 2013.
    [78] W. Wang, M. Tang, Z. Zheng, and S. Chen, "Alkaline polymer membrane‐based ultrathin, flexible, and high‐performance solid‐state Zn‐air battery," Advanced Energy Materials, vol. 9, no. 14, p. 1803628, 2019.
    [79] N. Xu et al., "High-performing rechargeable/flexible zinc-air batteries by coordinated hierarchical Bi-metallic electrocatalyst and heterostructure anion exchange membrane," Nano Energy, vol. 65, p. 104021, 2019.
    [80] H. Miao et al., "All-solid-state flexible zinc-air battery with polyacrylamide alkaline gel electrolyte," Journal of Power Sources, vol. 450, p. 227653, 2020.
    [81] A. Kharazmi, N. Faraji, R. M. Hussin, E. Saion, W. M. M. Yunus, and K. Behzad, "Structural, optical, opto-thermal and thermal properties of ZnS–PVA nanofluids synthesized through a radiolytic approach," Beilstein journal of nanotechnology, vol. 6, no. 1, pp. 529-536, 2015.
    [82] E. Abdelrazek, I. Elashmawi, and S. Labeeb, "Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films," Physica B: Condensed Matter, vol. 405, no. 8, pp. 2021-2027, 2010.
    [83] A. Awadhia and S. Agrawal, "Structural, thermal and electrical characterizations of PVA: DMSO: NH4SCN gel electrolytes," Solid State Ionics, vol. 178, no. 13-14, pp. 951-958, 2007.
    [84] W. Kam, C.-W. Liew, J. Lim, and S. Ramesh, "Electrical, structural, and thermal studies of antimony trioxide-doped poly (acrylic acid)-based composite polymer electrolytes," Ionics, vol. 20, no. 5, pp. 665-674, 2014.

    QR CODE