簡易檢索 / 詳目顯示

研究生: 高嘉宏
Kao, Chia Hung
論文名稱: 矽鍺超晶格通道對絕緣層覆矽鰭式場效電晶體電特性之影響研究
Effects of SiGe Super-Lattice Channel on Electrical Characteristics of SOI FinFETs
指導教授: 張廖貴術
Chang-Liao, Kuei Shu
口試委員: 趙天生
Chao, Tien Sheng
陳旻政
Chen, Min Cheng
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 鰭式電晶體
外文關鍵詞: FinFET
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鍺相較於矽而言,電子的遷移率可提升兩倍、電洞的遷移率可以提升至四倍,故利用鍺材料在SOI FinFET上,達成更高的載子遷移率,以及high-k材料來達成超薄等效氧化層厚度,對於閘極漏電可以大大改善。
    本論文的研究以使用於NDL實驗室內之UHV-CME、ASM四族磊晶機台(EPSILON 2000+)磊出單層或矽鍺超晶格虛擬基板,之後在基板上用ALD沉積HfO2作為介電層。
    第一部分,使用磊晶成長方式在bulk FinFET電晶體之上,發現在SiGe+cap通道上,在電性上都表現的較SiGe還要突出,推測有一層Si cap在其之上,會使得鍺不易擴散至介面;此外,發現以矽鍺超晶格通道(2 Periods SiGe/Si)的效果在Ion/Ioff ratio、汲極電流、Gm、mobility的效果,皆明顯優於以矽鍺為通道之元件,並改善可靠度特性,因為在矽鍺之中插入一層類似矽阻擋層提升應力、減少鍺的updiffusion的現象。
    第二部分,與前一章節差別於本章節先製作出SOI基板及鰭式電晶體的結構,再使用UHV-CME以包覆性的磊晶方式在通道上面,單層或週期性堆疊矽鍺虛擬基板。實驗結果可以發現,經過超晶格磊晶之後的FinFET較純矽或單層SiGe FinFET結構有更好的電特性,如較高的汲極電流、轉導值以及載子遷移率的提升,且S.S.(Subthreshold Swing)特性比單層SiGe還要好,猜測是因為在矽鍺之中插入一層類似矽阻擋層,提升應力及平整度。此外超晶格磊晶之Tinv達到2.05 nm,因為是過薄的矽覆蓋層,使得等效氧化層微縮上的困難。
    第三部分,做矽鍺磊晶前經過高溫預烤去氧的影響探討,實驗結果發現,沒有經過高溫預烤之後可以壓低S.S.值、提高Gm值。從TEM圖認為高溫會使得表面較為不平整;此外,第三部分還有利用提升每一層矽鍺超晶格磊晶的厚度製作出SOI n-FinFET,探討其在電特性上的差異。實驗結果可以發現,提昇每一層矽鍺超晶格磊晶的厚度之後,得到較低的Tinv,並提升元件的驅動電流、載子遷移率,在Reliability特性上也有不錯的表現,推測因為Si cap增厚有助於阻擋Ge擴散至介面,而Ge的比例升高會有較多的載子在通道之內。


    For germanium (Ge) material, it provides two times electron mobility and four times hole mobility than silicon (Si). Therefore, Ge is used as channel material in SOI FinFET to obtain high channel mobility. The interface between Ge and high-k dielectric is also investigated to obtain ultra-thin equivalent oxide thickness (EOT) and reduced gate leakage current.
    Ultrahigh vacuum chemical molecular epitaxy (UHV-CME) and ASM (EPSILON 2000+), two facilities in National Nano Device Laboratories (NDL), are used to form SiGe and SiGe superlattice layers. Hafnium dioxide (HfO2) is deposited by Atomic Layer Deposition (ALD) as gate dielectric.
    In the first part, Si/SiGe multi-layer is epitaxially grown layer-by-layer in Si bulk FinFET. For SiGe+cap, the electrical characteristics are better than SiGe, because SiGe+cap has Si cap to suppress Ge diffusion; The electrical characteristics of SiGe super lattice such as Ion/Ioff ratio, drain current, Gm, carrier mobility and subthreshold swing are improved. We predict that Si is added to SiGe layers can achieve higher strain effect and lower Ge up-diffusion.
    In the second part, Si/SiGe multi-layer is successfully epitaxially grown on Si fin channel in SOI FinFET by using UHV-CME. Si/SiGe super lattice is helpful to obtain better electrical characteristics compared to SiGe+cap layer and control sample, such as drain current, Gm, carrier mobility and subthreshold swing are improved. We predict that Si is added to SiGe layers can achieve higher strain effect and improve interface. Furthermore, Si/SiGe super lattice achieve higher Tinv 2.05 nm. Because of the thinner Si cap, it is difficult to improve Tinv.
    In the third part, in order to remove oxide on Si wafer, we use pre-baking 900℃ before SiGe+cap epitaxially grown on Si fin channel in SOI FinFET by using UHV-CME. For without pre-baking 900℃, the characteristics of subthreshold swing and Gm are better than pre-baking 900℃. From TEM, we consider that high temperature suffer from poor interfacial quality; In addition, the thickness of Si/SiGe super lattice is modulated in the third part. The electrical characteristics of SOI FinFETs with different Si/SiGe super lattice are discussed. For the thick Si/SiGe super lattice, the electrical characteristics are better than thinner Si/SiGe one. Higher saturation drain current and mobility, and lower Tinv are achieved by thick Si/SiGe super lattice. In addition, good reliability can be achieved as well. We predict that thick Si cap can suppress Ge diffusion and thick Ge layers have more carriers in the channel.

    摘要 I Abstract III 致謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1前言 1 1.2使用High-k介電材料的原因 1 1.3高介電材料的選擇 2 1.4鰭式電晶體 3 1.5矽鍺虛擬基板-應變通道 3 1.6臨界厚度 4 1.7差排 5 1.8論文架構 6 第二章 元件製程與量測 16 2.1 氧化鉿為介電層應用在Gate First SOI n-FinFET製作流程 16 2.1.1 晶片刻號 16 2.1.2 鰭式矽通道形成 16 2.1.3 磊晶矽鍺虛擬基板與閘極介電層沉積 17 2.1.4 金屬閘電極的形成 17 2.1.5 源極(Source)、汲極(Drain)、基極(Base)的形成 17 2.1.6 鈍化層沉積 18 2.1.7接出金屬導線、燒結 18 2.2 電性量測 18 2.2.1 金氧半電晶體的量測 18 第三章 矽鍺超晶格作為通道於塊狀基板式鰭式電晶體之電性研究 25 3.1研究動機 25 3.2製程與量測 27 3.2.1製程條件 27 3.2.2量測參數 30 3.3實驗結果與討論 30 3.3.1矽鍺超晶格作為通道於鰭式電晶體之材料結構特性研究 30 3.3.2矽鍺超晶格作為通道於鰭式電晶體之電特性分析 31 3.3.3矽鍺超晶格作為通道於鰭式電晶體元件之可靠度分析 35 3.4結論 37 第四章 矽鍺超晶格作為通道於絕緣層覆矽鰭式電晶體之電性研究 48 4.1研究動機 48 4.2製程與量測 49 4.2.1製程條件 49 4.2.2量測參數 53 4.3實驗結果與討論 53 4.3.1矽鍺超晶格作為通道於鰭式電晶體之相同閘極電容之電特性分析及電晶體元件之結構分析 54 4.3.2矽鍺超晶格作為通道於鰭式電晶體之電特性分析 56 4.3.3矽鍺超晶格作為通道於鰭式電晶體元件之可靠度分析 59 4.4結論 60 第五章 矽鍺磊晶前預烤與不同矽鍺超晶格通道之厚度於絕緣層覆矽鰭式電晶體之電性研究 74 5.1研究動機 74 5.2製程與量測 76 5.2.1製程條件 76 5.2.2量測參數 76 5.3實驗結果與討論 77 5.3.1相同閘極電容之電特性分析及電晶體元件之結構分析 77 5.3.2矽鍺磊晶前高溫預烤於SOI n-FinFET之電特性分析 79 5.3.3使用不同矽鍺超晶格通道厚度於SOI n-FinFET之電特性分析 80 5.3.4使用不同矽鍺超晶格通道厚度於SOI n-FinFET之可靠度分析 83 5.4結論 84 第六章 結論與展望 99 6.1結論 99 6.2未來展望 100 參考文獻 102

    [1]M. Agostinelli,VLSI Tech, p. 232–245, 2010.
    [2]Dieter K. Schroder, “Semiconductor Material and Device Characterization”, third edition, p. 342, 2006.
    [3]J. H. Stathis, et al, IEEE IEDM, Vol. 71, p. 167, 1998
    [4]Yuan Taur, et al., First published 1998, Reprinted, p.161, 1999.
    [5]D.C. Houghton, J. Appl. Phys, Vol. 70, p. 2136, 1991
    [6]M. Houssa, et al, Material Science and Enginerring R, p. 37, 2006
    [7]H. S. Momose, et al., IEEE Trans. Electron Devices, vol. 43, p.1223, August 1996
    [8]S, Saito, et al., IEEE IEDM, p. 797, 2003
    [9]R. People , et al., App. Phys. Lett, Vol. 47, p. 322, 1985
    [10]Niraj K. Jha, Electrical Engineering, Princeton University
    [11]H.-S. Petitdidier, et al., Thin Solid Films,Vol. 476, p. 51, 2005
    [12]Y.H Wu, Deep-Submicron-Devices Chapter 4, NTHU_2007
    [13]R. Zhang, North Carolina State University, Ph. D., p.1, 2006
    [14]A. I. Kingon, et al, Nature 406, p. 1032, 2000
    [15]Hiroaki Arimura, et al., Appl. Phys. Lett. 92,212902 ,2008
    [16]Shin-ichi Takagi et al., IEEE Trans. Electron Devices, Vol. 41, NO.12, p. 2357, 1994
    [17]University of Glasgow Semiconductor Device Group website
    [18]C. Y. Kang, et al., IEEE International SOI Conference Proceedings, p. 135-136, 2006
    [19]Hayashida et al., IEEE Trans. Electron Devices, Vol. 59, p. 647-653, March 2012
    [20]Chang Yong Kang et al., IEEE Electron Device Letters, Vol. 29, p. 487-490, May 2008
    [21]M. Yang et al., IEEE IEDM, p. 18.7.1, 2003
    [22]C. Y. Kang, et al., IEEE IEDM, p. 1-4, 2006
    [23]Georgios Vellianitis et al., IEEE Transactions on Electron Devices, Vol. 56, p.1548-1553, No. 7, July 2009
    [24]T.P.Ma et al., IEEE Trans. Electron Device, Vol. 45, p. 680, March 1998.
    [25]R. Woltjer, et al., IEEE Trans. Electron Devices, Vol. 42, p. 109, 1995
    [26]Tackhwi Lee, et al., IEEE Trans. Electron Devices, Vol. 58, NO. 2, p. 562-566, 2011
    [27]Niraj K. Jha, Electrical Engineering, Princeton University
    [28]Chia Ching Yeo, et al., IEEE Electron Device Letters, Vol. 26, No. 10, p. 761-763, 2005
    [29]Erich Kasper et al., Thin Solid Films, Vol. 336, p. 319-322, 1998
    [30]Goutam Kumar Dalapati, et al., IEEE Trans. Electron Devices, Vol. 53, No. 5, 2006
    [31]Pei-Jer Tzeng, et al., IEEE Trans. Device and Materials Reliability, Vol. 5, No. 2, p. 168-176, 2005
    [32]C. W. Liu, et al., Encyclopedia of Nanoscience and Nanotechnology, Vol. 9, p. 775-792, 2004
    [33]Chee Wee Liu, et al., IEEE Circuit & Devices Magazine, 2005
    [34]S. Maikap, et al., Solid-State Electronics, Vol. 44, p. 1029-1034, 2000
    [35]S. Maikap, et al., Semicond. Sci. Technol., Vol.15, p. 761-765, 2000
    [36]Tung Ming Pan, et al., Appl. Phys. Lett. vol.78, p.1439, 2001
    [37]C. D. Young, et al., IEEE Device and Materail Reliability, Vol.6, p. 123, 2006.
    [38]Erich Kasper et al., Thin Solid Films, Vol. 336, p. 319, 1998
    [39]Gareth Nicholson, et al., IEEE Electron Device Letters., Vol 28, p. 825, 2007
    [40]Bahar, R.I et al., IEEE Trans. Electron Devices, Vol. 59, p. 807-812, March 2012
    [41]Rui Zhang et al., IEEE IEDM, p. 28.3.4, 2011
    [42]K. Rim, et al., IEEE VLSIT, p. 59-60, 2001
    [43]C. R. Manoj et al.,IEEE Trans. Electron Devices, Vol. 55, p. 611, 2008
    [44]B. Parvais et al., VLSI-TSA, p. 80-81, 2009
    [45]S. M. Sze, , Second Ed. July, p.469-486
    [46]Laura M. Giovane, et al., Appl. Phys. Lett, Vol .78, No. 4, 2001
    [47]E. A.Fitzgerald, et al., J. Vac. Sci. Technol B, Vol. 10, p. 1807-1819, 1992
    [48]D. A. Antoniadis, et al., IBM J. Res. & Dev, Vol. 50, p.363-376, 2006
    [49]S.K. Ray, et al., Materials Science in Semiconductor Processing, Vol. 7, p. 203-208, 2004
    [50]Tae-Sik Yoon, et al, Appl. Phys. Lett., Vol. 87, p.012104, 2005
    [51]S. Gupta, M.L. Lee,et al., Emergency Technologies, p. 61, 2005
    [52]Y. H. Xie. et al., Physical Review Letters, Vol. 73, No. 22, 1994

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE