研究生: |
林韋丞 Abatie Wei-Cheng Lin |
---|---|
論文名稱: |
元件可靠度模型之建立與互補式金氧半高頻積體電路可靠度分析 Device Degradation Modeling and Circuit Reliability Evaluation for CMOS Radio Frequency Integrated Circuit |
指導教授: |
金雅琴
Ya-Chin King |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 高頻電路設計 、元件可靠度分析 、類比電路設計 、電路可靠度分析 、金氧半電晶體 |
外文關鍵詞: | RF Circuit Design, Device Reliability, Analog Circuit Design, Circuit Reliability, CMOS |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年來,半導體製程能力進步,使的元件物理特性提高,元件應用在電路的大型積體化已經逐漸成熟。鑿於電路特性及功能需求提升,電路的可靠度評估也在近幾年的學術或業界重要會議中被討論與發表。過去幾年的元件氧化層研究當中,元件的漏電物理機制以及氧化層的可靠度分析,已經大量的被探討和模型化。應用在商業中,操作的生命週期也接著被制訂。本論文以元件可靠度角度出發,廣泛且深度的觀察元件氧化層的衰退機制。從元件衰退後的直流漏電流的量測,到小訊號變化量測,接著再觀察元件操作到頻率高達好幾個GHz的電性衰退特性量測,本論文均有詳細的觀察與討論。廣泛觀察完元件的衰退特性之後,本文提出一個可以銜接SPICE模型的子電路模型,用以描述元件的衰退特性。從直流特性變化,到高頻小訊號衰退變化,都可藉由本文提出的子電路模型來預測。
擁有這個子電路模型後,本文針對一系列可以應用在高頻無線前端系統中重要子電路模組,如低雜訊放大器,頻率混合器,電壓壓控震盪器,以及功率放大器,討論子電路模組當中的元件衰退後,對其相對應子電路模組電路特性的影響。經由實驗數據驗證後的子電路模型,整合成一個操作頻率在5GHz的通訊用無線前端接受器,模擬當其中的子電路模組特性衰退後,對整個無線前端接受器的通用功能影響與變化。更進一步藉由建立的子元件衰退模型設計一個對元件衰退不敏感的高可靠度低雜訊放大器,取代傳統使用的低雜訊放大器,放入前述設計完成的無線前端接受器,再觀察前端接受器特性的變化,證明本文所提出的子電路模型可以用來預測電路本身的可靠度優良與否。
本論文,提出的可以銜接SPICE模型的子電路模型,使電路設計師在選擇電路架構與滿足設計規格的同時,除了保留電路本身遺傳的好特性與交換提升電路特性好處之外,其電路可靠性的良莠也可以在設計電路架構時一併納入考量。
Recently, CMOS device cutoff frequency and maximum oscillation frequency rise to Giga hertz due to the aggressively scaling of semiconductor technologies. Therefore, the highly integrated circuits combing both analog and digital circuits become possible. With the increasing complexity in circuit functionalities, circuit reliability testing and evaluation can be no longer following the conventional method. Conventional reliability assurances through the setting a safe operation region by device lifetime projection is insufficient to meet the demand of today’s IC and nano-scale CMOS technologies. In this dissertation, device degradation mechanisms and oxide reliability are investigated extensively. The device degraded characteristics in both the dc and the small signal characteristics up to Giga hertz are observed. From analyzing the device degradation characteristics, a sub-circuit model for describing the device degradation behavior is proposed. This model predicts both the device dc and small signal behavior in a good agreement with measured data.
Several circuit blocks for RF receiver, such as Low-Noise Amplifier, Mixer, Voltage-Controlled Oscillator and Power Amplifier are designed to discuss the performance shift as a result of degradation after operational stress. A 5GHz CMOS receiver is designed to investigate the effect of each building block on reliability of receiver system. Using the established sub-circuit model, a redesign of the most vulnerable circuit block in a receiver system, the LNA, is performed.
In this dissertation, the reliable evaluation method provides the circuit designers an additional degree of freedom in determining its safe operation conditions and rooms for enhancing both the circuit performance and reliability robustness. The simulated results of the redesigned LNA provide direction for more reliable system design while maintaining the highest circuit performance level.
Chapter 1
[1.1] T.H. Lee; “The Design of CMOS Radio Frequency Integrated Circuits.” Cambridge, U.K. Cambridge Univ. Press, 1998.
[1.2] Cheon Soo Kim; Hyun Kyu Yu; “CMOS layout and bias optimization for RF IC design applications,” IEEE MTT-S, Microwave Symposium Digest, pp.945-948, 1997.
[1.3] Abidi, A.A.;” RF CMOS comes of age,” IEEE VLSI Circuits, pp.113-116, June. 2003.
[1.4] C.S. Kim; M. Park, C-H.Kim; Y.C.Hyeon; K.Lee, K.S.Nam; “A fully integrated 1.9 GHz CMOS low-noise-amplifier,” IEEE Microwave Guided Wave Lett., vol.8, pp.293-295, Aug. 1998.
[1.5] T.H.Lee; A. Haimiri;”Design issue in CMOS differential LC Oscillators,” IEEE J.Solid-State Circuits, vol.34, pp.717-724, May 1999.
[1.6] R. Castello; F. Sevelto; S. Deantoni; “A 1.3GHz low phase noise fully tuneable CMOS LC VCO,” IEEE J.Solid-State Circuits, vol.35, pp.356-361, Mar 2000.
[1.7] Yo-Sheng Lin; Tai-Hsing Lee; Hsiao-Bin Liang; Shey-Shi Lu;” Characterization and modeling of 100 nm RF generic CMOS and 500 nm RF power CMOS,” IEEE VLSI Technology, System, and Applications, pp.105-108.,Oct. 2003.
[1.8] Sulivan, P.J.; Xavier, B.A.; Ku, W.H. “Low voltage performance of a microwave CMOS Gilbert cell mixer”, IEEE J.Solid-State Circuits, vol.32, pp.1151-1155, 1997.
[1.9] Saito, M; Ono, M.”0.15μm RF CMOS technology compatible with logic CMOS for low-voltage operation”, IEEE Trans. Electron Devices, vol. 45, pp.737-742, 1998.
[1.10] B. E. Weir, “Ultra-thin gate dielectrics: they break down, but do they fail?,” IEDM Technical Digest, pp. 73-76, 1997.
[1.11] B. Kaczer, R. Degraeve, G. Groeseneken, “Impact of MOSFET oxide breakdown on digital circuit operation and reliability,” IEDM Technical Digest, pp. 553-556, 2000.
[1.12] Sasan Naseh; M.Jamal Deen; “Effects of Hot-Carrier Stress on the Performance of CMOS Low Noise Amplifier,” IEEE International Reliability Physics Symposium, p.417-421, 2004.
[1.13] Enjun Xiao; J.S.Yuan; Hong Yang;” CMOS RF and DC Reliability Subject to Hot Carrier Stress and Oxide Soft Breakdown, “IEEE Transactions on Device and Materials Reliability, vol.4, pp.92-98, Mar. 2004.
[1.14] Luigi Pantisano; D.Schreurs; B.kaczer; W.Jeamsaksiri; R.Venegas; R.Degraeve; K.P.Cheung; G..Groeseneken; “RF Performance Vulnerability to Hot Carrier Stress and Consequent Breakdown in Low Power 90nm RFCMOS,” IEDM Technical Digest, pp. 7.7.1 - 7.7.4, 2003.
[1.15] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of voltage controlled oscillators based on a device degradation sub-circuit model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.377-380, 2003.
[1.16] Qiang Li; Wei Li; Jinlong Zhang; Yuan, J.S.; “ Soft breakdown and hot carrier reliability of CMOS RF mixer and redesign,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 399-402, 2002.
[1.17] Hong Yang, Wade Smith, J.S Yuan, “Gate oxide breakdown on low noise and power amplifier performance,” IEEE MTT-S, pp. 149-152, 2003.
[1.18] Wei-Cheng Lin; Tsung-Chieh Wu; Yi-Horn Tsai; Ya-Chin King;” Reliability Evaluation and Redesign of LNA,” Microelectronic Reliability, vol.44, pp.1727-1732, 2004.
[1.19] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of Gilbert Cell Mixer Based On a Hot-Carrier Stressed Device Degradation Model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.387-390, 2004.
[1.20] NATHAN O. SOKAL, ALAN D.SOKAL; “Class-E- A New Class of High-Efficiency Tuned Single-Ended Switching Power Amplifiers,” IEEE J. Solid-State Circuits, vol.SC-10, pp.168-176, 1975.
[1.21] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation and Comparison of Class-E and Class-A Power Amplifiers with 0.18μm CMOS Technology”, IEEE International Reliability Physics Symposium, pp.415-416, 2004.
[1.22] Quader, K.N.; Minami, E.R.; Wei-Jen Huang; Ko, P.K.; Chenming Hu; “Hot-carrier reliability design guidelines for CMOS logic circuits,” IEEE Custom Integrated Circuits Conference, pp30.7.1-30.7.4,1993.
[1.23] Quader, K.N.; Ko, P.K.; Hu, C.; Fang, P.; Yue, J.T.;” Simulations of CMOS circuit degradation due to hot-carrier effects, IEEE Reliability Physics Symposium, pp.16-23, 1992
[1.24] Qiang Li; Jinlong Zhang; Wei Li; Yuan, J.S.; Yuan Chen; Oates, A.S.;” RF circuit performance degradation due to soft breakdown and hot-carrier effect in deep-submicrometer CMOS technology,” IEEE Transactions on Microwave Theory and Techniques, vol.49, pp.1546-1551, Sep. 2001.
Chapter 2
[2.1] T.H.Ning, P.W.Cook, R.H.Dennard, “1μm MOSFET VLSI technology: Part IV-hot-electron design constrains,” IEEE Trans. Electron Devices, vol.ED-26, pp.346-353, 1979.
[2.2] P.E. Cottrell, R.R Troutman, “Hot-electron emission in n-channel IGFET’s”, IEEE Trans. Electron Device Lett., vol.ED-26, pp.520-532, 1979.
[2.3] Z.A. Weinberg, “On tunneling in metal-oxide-semiconductor structures”, J.Appl. Phy., vol.53,pp.5052-5056,1982.
[2.4] B. Kaczer, R. Degraeve, G. Groeseneken, “Impact of MOSFET oxide breakdown on digital circuit operation and reliability,” IEDM Technical Digest, pp. 553-556, 2000.
[2.5] Qiang Li; Wei Li; Jinlong Zhang; Yuan, J.S.; “Soft breakdown and hot carrier reliability of CMOS RF mixer and redesign,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 399-402, 2002.
[2.6] H.Iwai, H.s.Momose, “Ultra-Thin gate oxides-performance and reliability, “IEDM Technical Digest, pp.163-166, 1998.
[2.7] J.W.McPherson, H.C.Mogul, “Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films,” J.Appl. Phys., vol.84, pp.1513-1523, 1998.
[2.8] R.Degraeve, G. Groeseneken, R. Bellens, J.L.Orier, M.Depas, P.J. Roussel, and H.E.Maes, “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Trans. Electron Devices, vol.45, pp.904-911,1998.
[2.9] J.S.Suehle and P.Chaparala, “Low electric field breakdown of thin SiO2 films under static and dynamic stress,” IEEE Trans. Electron Devices, vol.44, pp.801-808, 1997.
[2.10] I. C. Chen, S. Holland, and C. Hu, “Oxide breakdown dependence on thicknessand hole current - enhanced reliability of ultra thin oxides,” IEDM Technical Digest, pp. 660-663, 1986.
[2.11] K. F. Schuegraf and C. Hu, “Hole Injection Oxide Breakdown Model for
Very Low Voltage Lifetime Extrapolation,” IEEE Reliability Physics Symposium, pp. 7-12, 1993.
[2.12] K. F. Schuegraf and C. Hu, “Effect of Temperature and Defects on Breakdown Lifetime of Thin SiO2 at Very Low Voltages,” IEEE Trans. Electron Devices, vol. 41, no. 7, pp. 1227-1232, July 1994.
[2.13] K. F. Schuegraf and C. Hu, “Hole Injection SiO2 Breakdown Model for
Very Low Voltage Lifetime Extrapolation,” IEEE Trans. Electron Devices, vol. 41, no. 5, pp. 761-767, May 1994.
[2.14] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J.
Roussel, and H. E. Maes, “New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 904-911, April 1998.
[2.15] K. F. Schuegraf and C. Hu, “Hole Injection Oxide Breakdown Model for
Very Low Voltage Lifetime Extrapolation,” IEEE Reliability Physics Symposium, pp. 7-12, 1993.
[2.16] D. J. DiMaria, E. Cartier, and D. A. Buchanan, “Anode hole injection and trapping in silicon dioxide,” J.Appl.Phys., vol. 80 , pp. 304-317, July 1996.
[2.17] D. J. DiMaria and J.W. Stasiak, “Trap creation in silicon dioxide produced by hot electrons,” J. Appl. Phys., vol. 65, no. 6, pp. 2342-2356, March 1989.
[2.18] E. Cartier and J. H. Stathis, “Atomic Hydrogen-Induced Degradation of the Si/SiO2 Structure,” Microelectron. Engin., vol. 28, pp. 3-10, 1995.
[2.19] J. Maserjian and N. Zamani, “Behavior of the Si/SiO2 interface observed
by Fowler-Nordheim tunneling,” J. Appl. Phys., vol. 53, pp. 559-567, Jan.1982.
[2.20] R. Moazzami and C. Hu, “Stress-induced current in thin silicon dioxide,” IEDM Technical Digest, pp. 139-142, 1992.
[2.21] H. Satake and A. Toriumi, “Common origin for stress-induced leakage
current and electron trap generation in SiO2,” Appl. Phys. Lett., vol. 67,
no. 23, pp. 3489-3490, Dec. 1995.
[2.22] J. De Blauwe, R. Degraeve, R. Bellens, J. Van Houdt, Ph. Roussel, G. Groeseneken, and H. E. Maes, “Study of DC Stress Induced Leakage Current(SILC) and its Dependence on Oxide Nitridation,” Proc. ESSDERC, pp. 361-364, 1996.
[2.23] J. De Blauwe, J. Van Houdt, D. Wellekens, R. Degraeve, Ph. Roussel,
L. Haspeslagh, L. Deferm, G. Groeseneken, and H. E. Maes, “A new
quantitative model to predict SILC-related disturb characteristics in Flash
E2PROM devices,” IEDM Technical Digest, pp. 343-346, 1996.
[2.24] H.M Lee, “Functional reliability study of MOS transistors with nano-scale gate oxides”, National Tsing-Hua University, Ph.D. dissertation, 2002.
[2.25] K.R.Farmer, R.Salti, “Curren fluctuions and silicon war-out in metal oxide siconducor tunnel diodes,’’ Appl. Phys. Lett., pp.149-1751,1988.
[2.26] S.H.Lee, B.J.Co, “Quasibreakdow of ultra-thin gate oxide under high field stress, “IEDM Technical Digest, pp.605-606, 1994
[2.27] K.Okada and K. Taniguchi,” Electrical stress induced variable range hopping conduction in ultra thin silicon dioxides,” Appl. Phys. Lett., vol.70, pp.351-353, 1997.
[2.28] A.Halimaouia, O.Brierea, “Quasibreakdown in ultrathin gate dielectrics,” Microelectron. Eng., vol.36, pp.157-160, 1997.
[2.29] M.Houssa, T.Nigam, “Model for the current –voltage characteristics of ultrathin oxides after soft breakdown,” J.Appl. Phys., vol.84, pp.4351-4355, 1998.
[2.30] M.A.Alam, B.Weir, “Wxplanation of soft and hard breakdown and its consequences for area scaling,” IEDM Technical Digest, pp.449-452, 1999.
[2.31] J. H. Stathis and D. J. DiMaria, “Reliability Projection for Ultra-Thin
Oxides at Low Voltage,” IEDM Technical Digest, pp. 167-170, 1998.
[2.32] S.M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley &
Sons, Inc., 1981.
[2.33] R. Degraeve, G. Groeseneken, R. Bellens, J. L. Ogier, M. Depas, P. J.
Roussel, and H. E. Maes, “New Insights in the Relation Between Electron Trap Generation and the Statistical Properties of Oxide Breakdown,” IEEE Trans. Electron Devices, vol. 45, no. 4, pp. 904-911, April 1998.
[2.34] J. L. Ogier, R. Degraeve, G. Groeseneken, and H. E. Maes, “On the
Polarity Dependence of Oxide Breakdown in MOS-Devices with n+ and
p+ Polysilicon Gate,” Proc. ESSDERC, pp. 763-766, 1996.
[2.35] J.S.Suehle and K.F. Galloway, “Test circuit structures for characterizing the effects of localized hot-carrier induced charge in VLSI switching circuits,” IEEE Proc. Microelectronic Test Structure, vol.1, pp.126-131, February 1988.
[2.36] Khanderker N. Quader, C.Hu, “A bidirectional NMOSFET current reduction model for simulation of hot carrier induced circuit degradation,” IEEE Trans. Electron Devices, vol.40, pp.2245-2254, 1993.
[2.37] R.Rpdriguez, J.H.Stathis, “A model for gate oxide breakdown in CMOS inverters,” IEEE Electron Device Lett., vol.24, 2003.
[2.38] Luigi Pantisano and B.Kaczer, “RF performance vulnerability to hot carrier stress and consequent breakdown in low power 90nm RFCMOS,” IEDM Technical Digest, 2003.
Chapter 3
[3.1] E. Takeda and N. Suzuki, “An Empirical Model for Device Degradation Due to Hot-Carrier Injection,” IEEE Electron Device Lett., vol. EDL-4, no. 4, pp. 111-113, April 1983.
[3.2] T. Horiuchi, H. Mikoshiba, K. Nakamura, and K. Hamano, “A Simple Method to Evaluate Device Lifetime Due to Hot-Carrier Effect Under Dynamic Stress,” IEEE Electron Device Lett, vol. EDL-7, no. 6, pp. 337-339, June 1986.
[3.3] Kueing-Long Chen, Steve Saller, and Rajiv Shah, “The Case of AC Stress in the Hot- Carrier Effect,” IEEE Trans. Electron Devices, vol. ED-33, no. 3, pp. 424-426, March 1986.
[3.4] W. Weber, “Dynamic Stress Experiment for Understanding Hot-Carrier Degradation Phenomena,” IEEE Trans. Electron Devices, vol. 35, pp. 1476, 1988.
[3.5] R. Bellens, P. Heremans, G. Groeseneken, and H. E. Maes, “Analysis of Mechanisms for the Enhanced Degradation During AC Hot Carrier Stress of MOSFETs,” IEDM Technical Digest, pp. 212-215, 1988.
[3.6] Peter M. Lee, Ping K. Ko, and Chenming Hu, “Relating CMOS Inverter Lifetime to DC Hot-Carrier Lifetime in nMOSFETSs,” Private Communication, Jan. 1990.
[3.7] Chenming Hu, Simon C. Tam, Fu-Chieh Hsu, Ping-Keung Ko, Tung-Yi Chan, and Kyle W. Terrill, “Hot-Electron-Induced MOSFET Degradation-Model, Monitor, and Improvement,” IEEE Trans. Electron Devices, vol. ED-32, no. 2, pp. 375-384, February 1985.
[3.8] S. Tam, F.-C. Hsu, C. Hu, R. S. Muller, and P. K. Ko, “Hot-Electron Currents in Very Short-Channel MOSFETS,” IEEE Electron Device Lett., vol. EDL-4, pp. 249, 1983.
[3.9] “Understanding the fundamental principles of vector network analysis,” Agilent Technologies Application Note 1287-1.
[3.10] Agilent Technologies Application Notes 1287-1: “Understanding the fundamental principles of vector network analyzers,” Pub.NO.5965-7710E, 1997.
[3.11] Agilent Technologies Application Notes 1287-4: “Network analyzer measurements; Filter and amplifier examples,” Pub.NO.5965-7710E, 1997.
[3.12] Cascade Microtech, “Microwave wafer probe calibration constants,” HP8510 network analyzer input instruction manual, 1990.
[3.13] Cascade Microtech, “On wafer vector network analyzer calibration and measurements”, 1997, Pub Name PYRPROBE-0597.
[3.14] Ickjin Kwon, Minkyu Je, “A simple and analytical parameter extraction method of a microwave MOSFET,” IEEE Transactions on Microwave Theory and Techniques, vol.50, 2002.
Chapter 4
[4.1] Behzad Razavi, “RF Microelectronics: Chapter 5, Transceiver Architectures”, Prentice Hall Communication Engineering and Emerging Technology Series, 1997.
[4.2] Jacques C. Rudell et al. “A 1.9-GHz Wide-Band IF Double Conversion CMOS Receiver for Cordless Telephone Applications,” IEEE J. Solid-State Circuits, vol. 32, pp. 2071-2088, Dec 1997.
[4.3] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 6, Building Blocks for CMOS Transceiver”, Kluwer Academic Publishers, 1997.
[4.4] M. D. McDonald, “A 2.5GHz BICMOS Image-Reject Front-end,” ISSCC Dig. Tech. Papers, pp.144-145, February 1993.
[4.5] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 3, Transceiver in the Frequency Domain”, Kluwer Academic Publishers, 1997.
[4.6] Paolo Orsatti, Francesco Piazza and Qiuting Huang, “A 20-mA-Receive, 55-mA-Transmit, Single-Chip GSM Transceiver in 0.25-um CMOS,” IEEE J. Solid-State Circuits, vol. 34, pp. 1869-1880, Dec 1999.
[4.7] George D. Vendelin, Anthony M. Pavio and Ulrich L. Rohde, “Microwave Circuit Design: Using Linear and Nonlinear Techniques”, A Wiley-Interscience Publication, 1990.
[4.8] Jan Crols and Michiel Steyaert, “CMOS Wireless Transceiver Design: Chapter 6, Building Blocks for CMOS Transceiver”, Kluwer Academic Publishers, 1997.
[4.9] Pietro Andreani and Steven Mattisson,” On the use of MOS varavtors in RF VCO’s,” IEEE J. Solid-State Circuits, vol.35, 2000.
[4.10] Behzad Razavi, “RF Microelectronics: Chapter 2, Basic Concepts in RF Design”, Prentice Hall Communication Engineering and Emerging Technology Series, 1997.
Chapter 5
[5.1] Wei-Cheng Lin; Tsung-Chieh Wu; Yi-Horn Tsai; Ya-Chin King;” Reliability Evaluation and Redesign of LNA,”Microelectronic Reliability, vol.44, pp.1727-1732, 2004.
[5.2] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of Gilbert Cell Mixer Based On a Hot-Carrier Stressed Device Degradation Model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.387-390, 2004.
[5.3] Wei-Cheng Lin; Long-Jei Du; Ya-Chin King;” Reliability evaluation of voltage controlled oscillators based on a device degradation sub-circuit model,” IEEE Radio Frequency Integrated Circuits Symposium, pp.377-380, 2003.