簡易檢索 / 詳目顯示

研究生: 朱光翰
Kuang Han Chu
論文名稱: 電動力學操控生物分子元件之設計與研究
Manipulation of Bio-Particles by Electrokinetics
指導教授: 劉承賢
Cheng-Hsien Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 67
中文關鍵詞: 操控介電泳介電泳井梯度微機電技術微針尖
外文關鍵詞: manipulation, dielectrophoresis, DEP trap, gradient, MEMS, micro-tip
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,操控生物類分子,如去氧核醣核酸(DNA)、蛋白質、以及細胞,在最於相當多生物醫學領域的研究上,如核酸分析、蛋白質結構、分子動力、以及酵素的反應速率與能量消耗等研究方面,有著極為顯著的幫助。但是,面前一般在操控生物分子所面臨最大且基本的問題點在於:過去及現行操控的工具在尺寸上,與其欲操控之分子,有相當大的差距。因此,在過去的幾年間,有相當多的可用於操控生物分子的現象與方法被提出與實現。但不可避免的,大部分的方式依然有相當的侷限性以及顯著的缺點。故在本研究中,我們目標便是研究並發展一種具有尺寸相合、非接觸式的操控生物分子技術。
    根據電動力學理論,當施加一交流電場時,可使其中可極化粒子產生出一與頻率相關的電雙極,藉由與周圍介質在非均勻電場下交互作用,可產生介電泳(dielectrophoresis)現象。而藉由適當的電極構型,可在空間中產生負(negative)介電泳現象的封閉區域,配以適當的頻率,便可將粒子抓取並限制於此特定區域,稱為介電泳井(trap)。由於介電泳力是種梯度力,故欲想產生較強的介電泳井現象,需與周圍環境有極強的電場梯度。而利用微機電技術製程的微針尖,能與週遭環境產生極強的電場梯度。藉由此概念,我們希望利用微針尖陣列的方式,配合介電泳井的現象,來達到我們操控生物分子的目的。


    Manipulation of bio-particles like cells, DNA, and protein is important for biological and medical research. One of fundamental difficulties for the manipulation of bio-particles is that most conventional manipulation devices are orders of magnitude much larger than the bio-partices, which range in size from a few nanometers to micrometers. Therefore, a number of phenomena and forces utilized to manipulate the position-control of particles have been proposed. Most proposed methods have some limitations and disadvantages. In our research, we aim at the developing a manipulation device that has the similar size order as targeted bio-objects and is a non-contact approach to bio-objects.
    The term AC electrokinetics refers to the movement of particles using AC electric fields. An AC field induces a frequency-dependent dipole on a polarizable particle. The interaction of this dipole and a non-uniform field can give rise to dielectrophoresis (DEP). By specific construction of the electrode geometry which generates the electric field, we could to create electric field morphologies so that the particles experiencing negative dielectrophoresis are “trapped” in isolated field minima. It is the dielectrophoretic field cage, or called DEP trap. Because the DEP force is a gradient force, an extremely high electric field relative to lower electric field surrounding is necessary for a strong DEP trap. The micro pyramid with sharply geometric changes can generate strong electric field gradient by its local high electric field around its tip to a lower electric field surrounding. Based on this concept, we utilize the anisotropic etching to make the micro pyramid array for bio-particles manipulation.

    Table of Contents 1.INTRODUCTION…………………………………………………… 1 1.1 Background and Motivation……………………………… 1 1.2 theory……………………………………………………… 3 1.2.1 AC Electrokinetics…………………………………… 3 1.2.2 Dielectrophoresis……………………………………… 3 1.2.3 DEP trap………………………………………………… 7 1.3 Survey of DEP trap device……………………………… 8 1.3.1 Planar-Electrode Mode………………………………… 8 1.3.2 3D Electrodes…………………………………………… 10 2. MANIPULATION DEVICE DEVELOPMENT………………………… 15 2.1 Design Concept of Manipulation Device……………… 15 2.1.1 Main Parameters of Design for the Device……… 15 2.1.2 Strong Electric Field on Micro-Tip……………… 16 2.2 Illustration of Manipulation Device………………… 19 2.3 Analyses and Simulations……………………………… 20 2.3.1 Size of Manipulation Device………………………… 20 2.3.2 Simulation by ANSYS…………………………………… 21 2.3.3 Simulation by CFDRC…………………………………… 24 2.3.4 Comparison with Other Kinds of DEP Trap………… 39 3. FABRICATION………………………………………………… 44 3.1 Fabrication Processes…………………………………… 44 3. 2 Fabrication Results………………………………… 48 3.2.1 Tip Etching Problem………………………………… 49 3.2.2 Hillock Phenomenon and Restrain………………… 51 3.2.3 Photoresist Coating and Metal Deposition Problem ……………………………………………………………52 4. EXPERIMENT…………………………………………………… 54 4.1 Experimental Apparatus Setup………………………… 54 4.1.1 Packing………………………………………………… 54 4.1.2 Fluidics, Optics and Electrical Excitation… 55 4.2 Experiment………………………………………………… 57 4.2.1 Trapping Characteristics Test…………………… 57 4.2.2 DEP Levitation Phonomenon………………………… 58 4.2.3 Release Flow Rate Concept………………………… 60 4.2.4 Trap Performance Experiment……………………… 60 5. Conclusions………………………………………………… 65 5.1 Summary……………………………………………………… 65 5.2 Outlook and Future Work………………………………… 66 List of Figures Figure 1.1: Techniques for manipulating bio-objects. (a) Optical tweezers, (b) Magnetic tweezers, (c) Glass microfibers [1].………………………………………… 2 Figure 1.2: A schematic diagram of a polarizable particle suspended within a point–plane electrode system [8].……………………………………………………………… 6 Figure 1.3: A plot of the Clausius-Mossotti factor versus frequency for TMV and HSV [9].……………………… 7 Figure 1.4: A schematic diagram of typical quadrupole electrode microstructures used in dielectrophoresis experiments [8].……………………………………………… 9 Figure 1.5: A simulation of the electric field in the plane 5 μm above the electrode array shown in figure 1.3 [8]……………………………………………………………… 9 Figure 1.6: Schematic diagram of two designs of planar electrodes [6].………………………………………… 9 Figure 1.7: The particles can clearly be seen collecting in the low field regions[6].……………………………… 10 Figure 1.8: The dielectric particles experience a levitation force in an electrostatic field [13].…… 11 Figure 1.9: Schematic view of DFC [14].………… 11 Figure 1.10: DFC trap a 15 μm latex bead [14].…… 12 Figure 1.11: Schematic view ofμDAC [15].………… 13 Figure 1.12: Four 10.0-μm beads held in four traps [15].……………………………………………………………… 13 Figure 1.13: Selective release of bioparticles under fluid flow [15]……………………………………………………… 13 Figure 1.14: Simulated comparison between planar (---) and extruded (¾) quadropole electrode structures. [16]………………………………………………………………… 14 Figure 2.1: Anisotropic etching process for Micro-Tip [19].………………………………………………………………… 17 Figure 2.2: SEM picture of Micro-Tip [20].…………………………………………………………… 17 Figure 2.3: Electric field distribution on Micro-Tip.………………………………………………………………… 18 Figure 2.4: SEM picture of Micro-Tip array [21].………………………………………………………………… 18 Figure 2.5: Schematic illustration of design concept.………………………………………………………………… 19 Figure 2.6: Schematic illustration of a quadrupole DEP trap [22].……………………………………………………………… 19 Figure 2.7: SOLID 122 [26].……………………………………………………………………… 22 Figure 2.8: Simulation model, the rims of tip align 45°of x and y-axis……………………………………………… 22 Figure 2.9: Top view of result of simulation.……… 23 Figure 2.10: Side view of result of simulation.……… 24 Figure 2.11: Comparison of x-directed barriers for two trap geometries [27].……………………………………… 25 Figure 2.12: Model of CFDRC.……………………… 26 Figure 2.13: Entrance and exit tips in Model of CFDRC.……………………………………………………………… 26 Figure 2.14: X, Y and Z-axis in simulation.……… 29 Figure 2.15: The Simulation Results of Quadrupole Tip Electrode.……………………………………………… 29 Figure 2.16: Gradient of square of electric field versus number of models.……………………………………… 33 Figure 2.17: Re[K(ω)] versus Frequency………… 37 Figure 2.18: The accumulation of particles in simulation in CFDRC.…………………………………………………… 38 Figure 2.19: The Cylindrical Electrode in Model of CFDRC.…………………………………………………………… 40 Figure 2.20: The Quadrupole Planer Electrode in Model of CFDRC.…………………………………………………… 40 Figure 2.21: The Simulation Results of Quadrupole Planer Electrode. 41 Figure 2.22: The Simulation Results of Cylindrical Electrode. 41 Figure 2.23: Variation of square of electric field (E2) in Z-axis direction. 44 Figure 3.1: Fabrication process flow. (cont’d) 46 Figure 3.2: Micro-Tip array made by KOH anisotropic etching 50 Figure 3.3: Comparison of the planes etching rate at 90℃ [28] 50 Figure 3.4: Etching rate of (h k l) planes in KOH+IPA solution at different T 51 Figure 3.5: Micro-Tip array and microchannel made by KOH+IPA anisotropic etching 51 Figure 3.6: The wet etching, using reaction cylindrical flask, condenser and heater. 53 Figure 3.7: Micro-tip array with metal deposition and wire 53 Figure 4.1: Picture and Schematic of packing assembly 55 Figure 4.2: Fluidic system 56 Figure 4.3: Schematic of my experimental apparatus setup 56 Figure 4.4: Real setup 57 Figure 4.5: Movie frames of trapping. (A) No beads are trapped. (B)The voltage is applied and beads are trapped. (C) The voltage is off and beads have been released 58 Figure 4.6: Movie frames of levitation. (A) Beads are not levitated. (B) The voltage is increased and beads are levitated. (C) and (D) The higher voltage is applied higher beads are levitated. 59 Figure 4.7: Movie frames of trapping in Micro-Tip array 61 Figure 4.8: Movie frames of trapping in quadrupole planer-electrode 63 Figure 4.9: The comparison of the efficiency of Micro-Tip array and quadrupole planer-electrode, using release flow rate measurements. 64 List of Tables Table 2.1: Particles that can be trapped in DEP trap [25]. 21 Table 2.2: Simulation parameters in CFDRC. 28 Table 2.3 Corresponding parameters of models in CFDRC simulations. 28 Table 2.4: Variation of square of electric field (E2) n in X, Y and Z-axis direction. 30 Table 2.5: Simulation-2 parameters in CFDRC. 37 Table 2.6: Variation of square of electric field (E2) in X-axis direction. 42 Table 2.7: Variation of square of electric field (E2) along Y-axis direction. 43 Table 3.1: KOH etching rate in different direction of silicon wafer. 45 Table 3.2: PECVD recipe of silicon oxide. 45

    References
    [1] T. Strick, J. -F. Allemand, V. Croquette, D. Bensimon, “The Manipulation of Single Biomolecules,” Physics Today, vol. 54, no. 10, pp. 46-60, October 2001.
    [2] C. -J. Kim, A. P. Pisano, R. S. Muller, M. G.. Lim, “Polysilicon Microgripper,” Tech. Dig., IEEE Solid-State Sensor and Actuator Workshop, pp. 48-51, June 1990.
    [3] C. -J. Kim, A. P. Pisano, R. S. Muller, “Silicon-Processed Overhanging Microgripper,” J. MEMS, vol. 1, no. 3, pp. 31-36, March 1992.
    [4] A. P. Lee, D. R. Ciarlo, P. A. Krulevitch, S. Lehew, J. Trevino, M. A. Northrup, “A Practical Microgripper by Fine Alignment, Eutectic Bonding and SMA Actuation,” Tech. Dig., Transducers ’95, pp. 368-371, June 1995.
    [5]
    F. Arai, D. Andou, T. Fukuda, “Adhesion Forces Reduction for Micro Manipulation Based on Micro Physics,” Proceedings of IEEE
    [6] N. G. Green, A. Ramos and H. Morgan, “Ac electrokinetics: a survey of sub-micrometre particle dynamics,” J. Phys. D: Appl. Phys. 33 (2000) 632–641.
    [7] W.B. Russel, D. A. Saville and W.R. Schowalter 1995 Colloidal Dispersions (Cambridge: Cambridge University Press).
    [8] M. P. Hughes, “AC electrokinetics: applications for nanotechnology,” Nanotechnology 11 (2000) 124–132.
    [9] H. Morgan, M. P. Hughes, and N. G. Green, “Separation of Submicron Bioparticles by Dielectrophoresis,” Biophysical Journal Volume 77 July 1999 516–525.
    [10] Th. Schnelle, T. Muller, G. Fuhr, “Trapping AC octode field cages,” J. Elecrostatics 50 (2000) 17-29.
    [11] M. P. Hughes “Computer-aided analysis of conditions for optimizing practical electrorotation,” Phys. Med. Biol. 43(1998) 3639–48
    [12] L.F. Hartley, K.V.I.S. Kaler, R. Paul, “Quadrupole levitation of microscopic dielectric particles,” Journal of Electrostatics 46 (1999) 233–246
    [13] J. Voldman, R. A. Braff, M. Toner, M. L. Gray, and M. A. Schmidt, “Holding Forces of Single-Particle Dielectrophoretic Traps,” Biophysical Journal Volume 80 January 2001 531–541.
    [14] Th. Schnelle, T. Muller, G. Fuhr, “Trapping in AC octode field cages.” Journal of Electrostatics 50 (2000) 17-29
    [15] J. Voldman, M. Toner, M.L Gray, M.A. Schmidt, “A Dielectrophoresis-Based Array Cytometer. Transducers '01, 322-325 (2001).
    [16] J. Voldman, M. Toner, M.L Gray, M.A. Schmidt, “Quantitative design and analysis of single-particle dielectrophoretic traps”. Micro Total Analysis Syst. '00. (eds. A. van den Berg, W. Olthius & P. Bergveld) 431-434 (2000).
    [17] H.A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge, 1978.
    [18] T.B. Jones, “Electromechanics of Particles,” Cambridge University Press, Cambridge, 1995.
    [19] T. Schnelle , T. Muller, R. Hagedorn, A. Voigt, G. Fuhr, “Single micro electrode dielectrophoretic tweezers for manipulation of suspended cells and particles,” Biochimica et Biophysica Acta 1428 (1999) 99-105
    [20] O. Wolter, Th. Bayer, J. Greschner, “Micromachined Silicon Sensors for Scanning Force Microscopy” J. Vac. Sci. Technol. B9(2), Mar/Apr 1991 1353-1357
    [21] M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, P. Renaud, “A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices,” Journal of Neuroscience Methods 114 (2002) 135–148
    [22] J. Voldman, M. L. Gray, M. Toner, M. A. Schmidt ,“A Microfabrication-Based Dynamic Array Cytometer,” Anal. Chem.2002, 74,3984-3990
    [23] G. Fuhr, H. Glasser, Th. Schnelle, Biochim. Biophys. Acta 1201(1994) 353.
    [24] G. Fuhr, T. Muller, Th. Schnelle, R. Hagedorn, A. Voigt, S Fiedler, W.-M. Arnold, U. Zimmermann, B Wagner, A Heuberger, Naturwiseenschaften 81 (1994)528
    [25] G. Fuhr, U. Zimmermann, S.G. Shirley, “Cell motion in time-varying fields: principles and potential.” Electromanipulation of Celss, U. Zimmermann and G.A. Neil(eds), CRC Press Inc., pp. 259-328, 1996.
    [26] ANASYS tutorial.
    [27] J. Voldmana, M. Tonerb, M.L. Graya, M.A. Schmidt, “A design and analysis of extruded quadrupolar dielectrophoretic traps,” Journal of Electrostatics 57 (2003) 69–90.
    [28] I. Zubel, “Silicon anisotropic etching in alkaline solution II: On the influence of anisotropy on smoothness of etched surfaces,” Sensor and Actuators A 70 (1998) 260-268.
    [29] I. Zubel, Malgorzata Kramkowska, “The effect of isotropic alcohol on etching rate and roughness of (100) Si surface etched in KOH and TMAH solutions,” Sensor and Actuators A 93 (2001) 138-147.
    [30] I. Zubel, “Silicon anisotropic etching in alkaline solution III: On the possibility of spatial structure form in the course of Si (100) anisotropic etching in KOH and KOH+IPA solutions,” Sensor and Actuators A 84 (2000) 116-125.
    [31] H. Schroder, E. Obermeier, and A. Steckenborn, “Micropyramidal hillocks on KOHetched <100> silicon surfaces: formation, prevention and removal,” J. Micromech. Microeng. 9 (1999) 139–145.
    [32] S.-S. Tan, M. L. Reed, and R. Boudreau, “Mechanisms of Etching Hillock Formation,” J. Microelectromechanical Systems, Vol. 5 No. 1, March 1996.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE