研究生: |
何宗承 Ho, Tsung-Cheng, |
---|---|
論文名稱: |
具高溫熱穩定性磺酸化之奈米介孔隙環氧樹酯質子交換膜之設計與製作 Thermally Stable Sulfonated Nanoporous Aryl Epoxy Resin as Proton Exchange Membranes at Elevated Temperatures |
指導教授: |
曾繁根
Tseng, Fan-Gang 王本誠 Wang, Pen-Cheng |
口試委員: |
李國賓
Lee, Gwo-Bin 吳樸偉 Wu, Pu-Wei 薛康琳 Hsueh, Kan-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 質子交換膜 、燃料電池 、環氧樹酯 、磺酸苯胺 |
外文關鍵詞: | proton exchange membrane, fuel cell, aryl epoxy resin, sulfanilic acid |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文提出藉由光圖形化為基礎做出具奈米介孔隙環氧樹酯質子交換膜,並依特定的單體莫耳數重量比均勻混合磺酸苯胺來達到磺酸化的程序,此奈米介孔隙環氧樹酯質子交換膜製程涉及使用溶劑鑄造法形成奈米介孔隙結構,並結合標準黃光微影步驟為了微結構的製程。
從微結構分析知道,藉由溶劑鑄造法可以有效的使環氧樹酯質子交換膜產生奈米介孔隙孔洞,並透過介孔隙孔洞分佈分析和介孔隙孔洞通透性分析了解到奈米介孔隙環氧樹酯質子交換膜與NafionR 115的基本孔洞特性極為相似;而從溶解性分析、結構分析與成分分析可發現,環氧樹酯(SU-8 5)與磺酸苯胺有互溶,且在結構上有發生鏈結;熱穩定性分析證明在曝光後硬烤(PEB, Post Expose Bake)溫度為950C所製成的奈米介孔隙環氧樹酯質子交換膜是很穩定的。
在燃料電池之陰極半電池測試中,當反應溶液(H2SO4)溫度從600C上升至900C時,NafionR 115的電流密度和還原電位皆下降,主要的原因為NafionR 115內部的水分跑出,導致質子無法有效傳遞,因而影響到電流密度。然而,奈米介孔隙環氧樹酯質子交換膜的電流密度和還原電位皆有小幅的上升,表示奈米介孔隙環氧樹酯質子交換膜不會受到燃料電池的工作溫度高低而影響其性能。
奈米介孔隙環氧樹酯質子交換膜不論在成本、機械強度、熱穩定性和燃料電池使用穩定性上,皆比NafionR 115還好來的好,再結合光圖形化的製程,將可以更有效的在質子交換膜燃料電池上利用奈米介孔隙環氧樹酯質子交換膜。
This paper proposes a new proton exchange membrane (PEM) based on photochemically synthesized nano porous aryl epoxy resin (npAER) sulfonated by sulfanilic acid. The npAER PEM fabrication process involves solvent-induced nanoporous structure formation combined with photopolymerization for microstructure fabrication.
npAER/sulfanilic acid PEM have microstructure on surface by solvent-casting fabrication process. The major pore distribution of npAER/Sulfanilic acid PEM is very similar to that of NafionR 115 by physical gas adsorption-desorption and permeability test. npAER/sulfanilic acid PEM chemical structure, composition analysis and thermal stability, by UV-VIS-NIR, FTIR, XPS and cyclic voltammetry.
The PEM was placed in the cathode of a half-fuel cell for testing in 0.5M H2SO4 at different temperatures with a constant oxygen flow. When compared to commercial PEM based on NafionR 115, this npAER/sulfanilic acid PEM exhibits increased current density as temperature increased from 600C to 900C, while NafionR 115 demonstrates current density drop. The npAER/sulfanilic acid PEM shows decent thermal stability, mechanical strength and proton transport ability at a higher temperature (900C).
[1]黃鎮江,燃料電池,全華科技圖書股份有限公司,台灣,中華民國九十四年。
[2]D. A. Claire, “Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques”, Progress in Materials Science, 56, 2011, 289-327.
[3]V.M. Vishnyakov, “Proton exchange membrane fuel cells”, Vacuum, 80, 2006, 1053-1065.
[4]雷永泉,新能源材料,新文京開發出版股份有限公司,台灣,中華民國九十三年。
[5]S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, “Review of the proton exchange membranes for fuel cell applications”, journal of hydrogen energy, 35, 2010, 9349-9384.
[6] N. W. Deluca, Y. A. Elabd, “Polymer electrolyte membranes for the direct methanol fuel cell: A review”, Journal of Polymer Science Part B-Polymer Physics, 44, 2006, 2201-2225.
[7]W.H.J. Hogarth, J.C. Diniz da Costa, G.Q.(Max) Lu, “Solid acid membranes for high temperature (>140 ◦C) proton exchange membrane fuel cells”, Journal of Power Sources, 142, 2005, 223-237.
[8]T. Higashihara, K. Matsumoto, M. Ueda, “Sulfonated aromatic hydrocarbon polymers as proton exchange membranes for fuel cells”, Polymer, 50, 2009, 5341-5357.
[9]M. Rikukawa, K. Sanui, “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Prog. Polym. Sci, 25, 2000, 1463-1502.
[10]V. Neburchilov, J. Martin, H. Wang, J. Zhang, “A review of polymer electrolyte membranes for direct methanol fuel cells”, Journal of Power Sources, 169, 2007, 221-238.
[11]V. Saarinen, O. Himanenb, T. Kallio, G. Sundholma, K. Kontturi, “Current distribution measurements with a free-breathing direct methanol fuel cell using PVDF-g-PSSA and NafionR117 membranes”, Journal of Power Sources, 163, 2007, 768-776.
[12]R. Souzy, B. Ameduri, B. Boutevin, G. Gebel, P. Capron, “Functional fluoropolymers for fuel cell membranes”, Solid State Ionics, 176, 2005, 2839-3848.
[13]B. A. Holmberg, X. Wanga, Y. Yan, “Nanocomposite fuel cell membranes based on Nafion and acid functionalized zeolite beta nanocrystals”, Journal of Membrane Science, 320, 2008, 86-92.
[14]B. Smitha, S. Sridhar, A.A. Khan, “Solid polymer electrolyte membranes for fuel cell applications—a review”, Journal of Membrane Science, 259, 2005, 10-26.
[15]張家榮,「多功能性奈米介孔隙材料及其奈米元件之設計與製造」,國立清華大學工程與系統科學研究所,博士論文,中華民國九十九年。
[16]林智仁、羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,台灣,中華名國九十二年九月,201期。
[17]王以誠,大學儀器分析學,徐氏基金會,台灣,中華名國六十三年。
[18]P. Bebin, M. Caravanier, H. Galiano, “NafionR/clay-SO3H membrane for proton exchange membrane fuel cell application”, Journal of Membrane Science, 278, 2006, 35-42.
[19] A. BiyIkoglu, “Review of proton exchange membrane fuel cell models”, International Journal of Hydrogen Energy, 30, 2005, 1181-1212.
[20]M. Wakizoe, O. A. Velev, S. Srinivasan, “ANALYSIS OF PROTON-EXCHANGE MEMBRANE FUEL-CELL PERFORMANCE WITH ALTERNATE MEMBRANES”, Electrochimica Acta, 40, 1995, 335-344.
[21]J. Yeom, R. S. Jayashree,C. Rastogi, M. A. Shannon, P. J. A. Kenis, “Passive direct formic acid microfabricated fuel cells”, Journal of Power Sources, 160, 2006, 1058-1064.