研究生: |
程奕璁 Cheng, I-Tsung |
---|---|
論文名稱: |
利用surface display建構具輔因子再生能力之靛藍生產系統 Production of indigo with cofactor regeneration using surface display |
指導教授: |
沈若樸
Shen, Roa-Pu |
口試委員: |
郭家倫
GUO, JIA LUN 蘭宜錚 Lan, I-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 表面布置系統 、體外生物催化 、靛藍 、靛玉紅 、大腸桿菌 |
外文關鍵詞: | Surface display, Ice nucleation protein, indigo, indirubin, E.coli |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
靛藍為一環狀結構化合物,且因為靛藍分子大小使其不易通過細胞膜,以微生物經由代謝途徑生產靛藍容易因為靛藍累積於E.coli內而造成結晶以及毒性問題導致細胞死亡以及產量不佳,且靛藍化合物需要經過破菌等程序才能取得產物,因此我們建構了一體外生產靛藍系統並搭配輔因子再生系統,讓產物不需破菌也能夠取得。
我們採用了surface display方法嘗試解決這個問題,藉由INP(ice-nucleation protein)成功將生產靛藍所需的酵素Corynebacterium glutamicum ATCC13032的flavin-containing monooxygenase(FMO)表現於外細胞膜上,於細胞體外生產靛藍會因為缺乏NADPH而無法生產,為解決此問題我們將建構體外輔因子再生系統,將Candida boidinii的formate dehydrogenase(FDH)也以surface display方法表現,並透過位點突變INP-FDH與formate進行催化反應時能將NADP+還原,藉此系統可將生產靛藍後殘餘的NADP+回收成為NADPH再提供給FMO的催化反應使用。
由於INP-FMO以及INP-FDH之間存在著活性差異,因此我們透過調整兩者的RBS序列以及位點突變INP-FMO,並搭配調整反應菌量,將兩者的反應速率調控為最適生產之條件。以surface display表現FMO與FDH並且成功將兩者以co-culture的方式於體外生產靛藍。接著透過two phase生產系統將基質indole溶於有機相之中,搭配以上測試之最佳生產條件,目前使用有機相diphenylmethane能夠將靛藍的產量分別於水相及有機相提升到410 mg/L及20 mg/L,而靛玉紅產量分別約為10 mg/L及40 mg/L。
Indigo is a kind of cyclic compound. It is hard to pass through cell membranes because of the molecular size of indigo. The production of indigo by microorganisms through metabolic pathways is prone to crystallization and toxicity problems caused by the accumulation of indigo in E.coli, resulting in cell death and poor yield. Moreover, indigo compounds need to undergo procedures such as sterilization to obtain the product. Therefore, we constructed an in vitro production system for indigo and a cofactor regeneration system, so that the product can be obtained without sterilization.
In this study, we adopted the techniques of surface display to address this difficulty. With the aid of INP(ice-nucleation protein), we successfully expressed flavin-containing monooxygenase(FMO) of Corynebacterium glutamicum ATCC13032 onto the outer membrane E.coli BL21 that is an important enzyme to produce indigo. However, in-vitro indigo production needs to add addition NADPH. We provided another way to recycle NADP+ back to NADPH, then we do not necessary keep adding NADPH. Utilize site mutation formate dehydrogenase(FDH) from Candida boidinii with the techniques of surface display to regenerate NADPH can make this indigo in-vitro biosynthesis production system more completely.
Due to the difference in activity between INP-FMO and INP-FDH, it will cause insufficient NADPH cycle efficiency and affect indigo production. Therefore, we adjusted the RBS sequence and site mutation INP-FMO, and adjustment of the amount of reaction bacteria, the reaction rate of the two can be adjusted to the optimal production conditions.
We expressed FMO and FDH with surface display and successfully co-culture to produce indigo in vitro. Then, the substrate indole is dissolved in the organic phase through the two phase extraction system. So far we can use diphenylmethane as the organic phase of the two-phase extraction, which can produce up to about 410 mg/L of indigo and 10 mg/L of indirubin in aqueous phase and 20 mg/L of indigo and 40 mg/L of indirubin in organic phase.
1. Beeson Jr, K.H., Indigo production in the eighteenth century. Hispanic American Historical Review, 1964. 44(2): p. 214-218.
2. Sequin-Frey, M., The chemistry of plant and animal dyes. Journal of chemical education, 1981. 58(4): p. 301.
3. Perkin, W.H., Chemistry of Blue Jeans: Indigo Synthesis and Dyeing.
4. Ensley, B.D., et al., Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science, 1983. 222(4620): p. 167-169.
5. Ameria, S.P.L., et al., Characterization of a flavin-containing monooxygenase from Corynebacterium glutamicum and its application to production of indigo and indirubin. Biotechnology letters, 2015. 37(8): p. 1637-1644.
6. Kim, H.-J., et al., Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya. Dyes and Pigments, 2017. 140: p. 29-35.
7. Burns, R. and R. Demoss, Properties of tryptophanase from Escherichia coli. Biochimica et biophysica acta, 1962. 65(2): p. 233-244.
8. Han, G.H., et al., Bio-indigo production in two different fermentation systems using recombinant Escherichia coli cells harboring a flavin-containing monooxygenase gene (fmo). Process biochemistry, 2011. 46(3): p. 788-791.
9. Bhushan, B., S. Samanta, and R. Jain, Indigo production by naphthalene‐degrading bacteria. Letters in applied microbiology, 2000. 31(1): p. 5-9.
10. O'connor, K.E. and S. Hartmans, Indigo formation by aromatic hydrocarbon-degrading bacteria. Biotechnology Letters, 1998. 20(3): p. 219-223.
11. Higashio, Y. and T. Shoji, Heterocyclic compounds such as pyrrole, pyridines, pyrrolidine, piperidine, indole, imidazol and pyrazines. Applied Catalysis A: General, 2004. 260(2): p. 251-259.
12. Lee, J.-H., T.K. Wood, and J. Lee, Roles of indole as an interspecies and interkingdom signaling molecule. Trends in microbiology, 2015. 23(11): p. 707-718.
13. Fetzner, S., Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions. Applied Microbiology and Biotechnology, 1998. 49(3): p. 237-250.
14. Doukyu, N. and R. Aono, Biodegradation of indole at high concentration by persolvent fermentation with Pseudomonas sp. ST-200. Extremophiles, 1997. 1(2): p. 100-105.
15. Han, G.H., H.-J. Shin, and S.W. Kim, Optimization of bio-indigo production by recombinant E. coli harboring fmo gene. Enzyme and Microbial Technology, 2008. 42(7): p. 617-623.
16. Han, G.H., et al., Enhanced indirubin production in recombinant Escherichia coli harboring a flavin-containing monooxygenase gene by cysteine supplementation. Journal of biotechnology, 2013. 164(2): p. 179-187.
17. Stewart, J.D., Dehydrogenases and transaminases in asymmetric synthesis. Current opinion in chemical biology, 2001. 5(2): p. 120-129.
18. Berenguer-Murcia, A. and R. Fernandez-Lafuente, New trends in the recycling of NAD (P) H for the design of sustainable asymmetric reductions catalyzed by dehydrogenases. Current Organic Chemistry, 2010. 14(10): p. 1000-1021.
19. Yu, X., et al., Efficient reduction of CO2 by the molybdenum-containing formate dehydrogenase from Cupriavidus necator (Ralstonia eutropha). Journal of Biological Chemistry, 2017. 292(41): p. 16872-16879.
20. Alissandratos, A., et al., Clostridium carboxidivorans strain P7T recombinant formate dehydrogenase catalyzes reduction of CO2 to formate. Applied and environmental microbiology, 2013. 79(2): p. 741-744.
21. Choe, H., et al., Efficient CO2-reducing activity of NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA for formate production from CO2 gas. PLoS One, 2014. 9(7): p. e103111.
22. Altaş, N., et al., Heterologous production of extreme alkaline thermostable NAD+-dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochemistry, 2017. 61: p. 110-118.
23. Aslan, A.S., et al., Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3−) to formate. Protein Engineering, Design and Selection, 2016. 30(1): p. 47-55.
24. Wu, W., D. Zhu, and L. Hua, Site-saturation mutagenesis of formate dehydrogenase from Candida bodinii creating effective NADP+-dependent FDH enzymes. Journal of Molecular Catalysis B: Enzymatic, 2009. 61(3-4): p. 157-161.
25. Huang, J.X., S.L. Bishop-Hurley, and M.A. Cooper, Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrobial agents and chemotherapy, 2012. 56(9): p. 4569-4582.
26. Stathopoulos, C., G. Georgiou, and C. Earhart, Characterization of Escherichia coli expressing an Lpp’OmpA (46-159)-PhoA fusion protein localized in the outer membrane. Applied microbiology and biotechnology, 1996. 45(1): p. 112-119.
27. Maurer, J., J. Jose, and T.F. Meyer, Autodisplay: one-component system for efficient surface display and release of soluble recombinant proteins from Escherichia coli. Journal of bacteriology, 1997. 179(3): p. 794-804.
28. Yim, S.-K., et al., Surface display of heme-and diflavin-containing cytochrome P450 BM3 in Escherichia coli: A whole-cell biocatalyst for oxidation. Journal of microbiology and biotechnology, 2010. 20(4): p. 712-717.
29. Samuelson, P., et al., Display of proteins on bacteria. Journal of biotechnology, 2002. 96(2): p. 129-154.
30. van Bloois, E., et al., Decorating microbes: surface display of proteins on Escherichia coli. Trends in biotechnology, 2011. 29(2): p. 79-86.
31. Jeong, H.-S., S.-K. Yoo, and E.-J. Kim, Cell surface display of salmobin, a thrombin-like enzyme from Agkistrodon halys venom on Escherichia coli using ice nucleation protein. Enzyme and microbial technology, 2001. 28(2-3): p. 155-160.
32. Schwartz, R. and C. McCoy, Epoxidation of 1, 7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane. Applied and Environmental Microbiology, 1977. 34(1): p. 47-49.
33. Wery, J., D. Mendes da Silva, and J. De Bont, A genetically modified solvent-tolerant bacterium for optimized production of a toxic fine chemical. Applied microbiology and biotechnology, 2000. 54(2): p. 180-185.
34. Schmid, A., et al., Industrial biocatalysis today and tomorrow. nature, 2001. 409(6817): p. 258-268.
35. Doukyu, N., et al., Isolation of an Acinetobacter sp. ST-550 which produces a high level of indigo in a water-organic solvent two-phase system containing high levels of indole. Applied microbiology and biotechnology, 2002. 58(4): p. 543-546.
36. Heipieper, H.J., et al., Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems. Applied microbiology and biotechnology, 2007. 74(5): p. 961-973.
37. Isken, S. and J.A. de Bont, Bacteria tolerant to organic solvents. Extremophiles, 1998. 2(3): p. 229-238.
38. Brink, L. and J. Tramper, Optimization of organic solvent in multiphase biocatalysis. Biotechnology and bioengineering, 1985. 27(8): p. 1258-1269.
39. Inoue, A. and K. Horikoshi, Estimation of solvent-tolerance of bacteria by the solvent parameter log P. Journal of Fermentation and Bioengineering, 1991. 71(3): p. 194-196.
40. Tsai, S.-L., et al., Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Applied and environmental microbiology, 2009. 75(19): p. 6087-6093.
41. Binay, B., et al., Highly stable and reusable immobilized formate dehydrogenases: Promising biocatalysts for in situ regeneration of NADH. Beilstein journal of organic chemistry, 2016. 12(1): p. 271-277.
42. Cooper, G.M., R.E. Hausman, and R.E. Hausman, The cell: a molecular approach. Vol. 4. 2007: ASM press Washington, DC.
43. Mädje, K., et al., Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Microbial cell factories, 2012. 11(1): p. 1-8.
44. Yang, C., et al., Simultaneous hydrolysis of carbaryl and chlorpyrifos by Stenotrophomonas sp. strain YC-1 with surface-displayed carbaryl hydrolase. Scientific reports, 2017. 7(1): p. 1-8.
45. Doukyu, N., K. Toyoda, and R. Aono, Indigo production by Escherichia coli carrying the phenol hydroxylase gene from Acinetobacter sp. strain ST-550 in a water–organic solvent two-phase system. Applied microbiology and biotechnology, 2003. 60(6): p. 720-725.
46. Kim, J., et al., Elucidating Cysteine-Assisted Synthesis of Indirubin by a Flavin-Containing Monooxygenase. ACS Catalysis, 2019. 9(10): p. 9539-9544.