研究生: |
楊惠玲 Yeo, Hui-Ling |
---|---|
論文名稱: |
唾液酸轉移酶ST3Gal1對腫瘤生長及血管增生之影響 The effects of ST3Gal1 mediated sialylation on tumor progression and angiogenesis |
指導教授: |
陳鈴津
Yu, Alice Lin-Tsing 張大慈 Chang, Margaret Dah-Tsyr |
口試委員: |
游正博
Yu, John 吳世雄 Wu, Shih-Hsiung 呂仁 Lu, Joyce Jean |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 唾液酸修飾 、唾液酸專移酶 、乳癌 、腫瘤新生血管 、乙型轉化生長因子 |
外文關鍵詞: | ST3Gal1, Vasorin |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
唾液酸轉移酶(ST3Gal1)及它的產物 sialyl-3T , disialyl-T 高度表現在各種腫瘤,且與病人較差的癒後能力息息相關。但唾液酸修飾對其基質蛋白的功能影響仍不是很清楚。本論文利用腫瘤細胞皮下接種至實驗鼠揭示降低 ST3Gal1 表現會抑制腫瘤的生長及腫瘤內血管的形成。另外,我們發現 Vasorin (VASN) 是唾液酸轉移酶的其中一個基質蛋白且與 TGF-β1 誘導腫瘤內新生血管形成相關。所以本論文探討 ST3Gal1 如何調控 VASN 從而影響腫瘤內血管的生成。經由質譜儀分析, VASN 被證實是 ST3Gal1 的基質蛋白,因為在VASN上的O-連接醣基化修飾,百份之八十是 sialyl-3T,disialyl-T。另外,培養液取自抑制 ST3Gal1表現的癌細胞,可以抑制人臍靜脉血管內皮細胞 (HUVEC)形成體外管柱(Tube formation),但加入 VASN 抗體能緩解這個現象。另外,過度表現去唾液酸轉移酶的癌細胞所生產的VASN,可明顯抑制 TGF-β1 誘導 Smad2 和 Smad3 磷酸化。使用神經氨酸酶(Neuraminidase)移除 α2,3-上連接的唾液酸可提高VASN 與 TGF-β1 的結合兩到三倍,因而降低了 TGF-β1 誘導腫瘤內新生血管形成。為了了解ST3Gal1,VASN 和 TGF-β1 在人類乳癌的調控關係,我們利用 114 個乳癌的病人樣本進行分析及結果顯示 ST3GAL1與TGFB1在癌細胞的表現較高並與病人癒後較差有關,尤其乳癌後期的病人愈發明顯,另外,VASN 高表現 的病人有明顯較好的癒後,但只有在TGF-β1低表現時。因為TGF-β1可刺激 ST3GAL1 基因的表現,這些發現揭示一個由TGF-β1調控唾液酸修飾的迴路,借由誘導 ST3Gal1 表現上升修飾 VASN,從而降低VASN 在癌症中的對 TGF-β1 抑制作用 。
ST3Gal1 is key sialyltransferase which adds α2,3-linked sialic acid to substrates and generates core 1 O-glycan structure. Up-regulation of ST3Gal1 has been shown to be tumorigenic and its O-glycan products, sialyl-3T, and disialyl-T were associated with worse prognosis of various of cancer patients. Here, we demonstrated that ST3GAL1-silencing significantly reduced tumor growth along with a notable decrease in vascularity of MCF7 xenograft tumors. However, the protein substrates of ST3Gal1 implicated in tumor progression remain elusive. Here we reported Vasorin (VASN), which was shown to bind TGF-β1, to be one of the substrates of ST3Gal1, and further demonstrated that ST3Gal1-mediated O-linked sialylation of VASN affected TGF-β1 induced-angiogenesis. LC/MS/MS analysis revealed that more than 80% of O-glycans of soluble VASN are sialyl-3T and disialyl-T. Removal of sialylation on VASN by neuraminidase enhanced its binding to TGF-β1 by 2 to 3-fold and thereby dampening TGF-β1 signaling and angiogenesis, as indicated by impaired tube formation of HUVECs, suppressed angiogenesis gene expression and reduced activation of Smad2 and Smad3 in HUVEC cells. Since TGF-β1 is known to transcriptionally activate ST3Gal1, our findings illustrated a feedback regulatory loop in which TGF-β1 up-regulates ST3Gal1 to circumvent the negative impact of VASN. Kaplan Meier survival analysis showed a strong correlation among ST3GAL1, VASN and TGFB1 to relapse-free survive by using 114 fresh primary breast cancer and their adjacent normal tissues. In conclusion, our findings elucidated ST3Gal1-mediated sialylation of VASN promotes tumor progression, and these findings point to the targeting of ST3Gal1 as a new strategy for the treatment of breast cancer.
1 Anscher MS, Peters WP, Reisenbichler H, Petros WP, Jirtle RL. Transforming growth β as a predictor of liver and lung fibrosis after autologous bone marrow transplantation for advanced breast cancer. N Engl J Med 1993; 328: 1592-1598.
2 Arnaoutova I, Kleinman HK. In vitro angiogenesis: endothelial cell tube formation on gelled basement membrane extract. Nat Protoc 2010; 5: 628-635.
3 Barcellos-Hoff MH, Akhurst RJ. Transforming growth factor-β in breast cancer: too much, too late. Breast cancer research : BCR 2009; 11: 202.
4 Bierie B, Chung CH, Parker JS, Stover DG, Cheng N, Chytil A et al. Abrogation of TGF-β signaling enhances chemokine production and correlates with prognosis in human breast cancer. J Clin Invest 2009; 119: 1571-1582.
5 Bull C, Stoel MA, den Brok MH, Adema GJ. Sialic acids sweeten a tumor's life. Cancer Res. 2014; 74: 3199-3204.
6 Burchell J, Poulsom R, Hanby A, Whitehouse C, Cooper L, Clausen H et al. An alpha2,3 sialyltransferase (ST3Gal I) is elevated in primary breast carcinomas. Glycobiology 1999; 9: 1307-1311.
7 Burchell JM, Mungul A, Taylor-Papadimitriou J. O-linked glycosylation in the mammary gland: changes that occur during malignancy. J Mammary Gland Biol Neoplasia 2001; 6: 355-364.
8 Cazet A, Julien S, Bobowski M, Krzewinski-Recchi MA, Harduin-Lepers A, Groux-Degroote S et al. Consequences of the expression of sialylated antigens in breast cancer. Carbohydrate research 2010; 345: 1377-1383.
9 Cerliani JP, Blidner AG, Toscano MA, Croci DO, Rabinovich GA. Translating the 'Sugar Code' into immune and vascular signaling programs. Trends Biochem Sci 2017; 42: 255-273.
10 Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008; 7: 1650-1659.
11 Chantrain CF, DeClerck YA, Groshen S, McNamara G. Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem 2003; 51: 151-158.
12 Chen JY, Tang YA, Huang SM, Juan HF, Wu LW, Sun YC et al. A novel sialyltransferase inhibitor suppresses FAK/paxillin signaling and cancer angiogenesis and metastasis pathways. Cancer Res 2011; 71: 473-483.
13 Cheng SH, Tsou MH, Liu MC, Jian JJ, Cheng JC, Leu SY et al. Unique features of breast cancer in Taiwan. Breast Cancer Res Treat 2000; 63: 213-223.
14 Chong YK, Sandanaraj E, Koh LW, Thangaveloo M, Tan MS, Koh GR et al. ST3GAL1-Associated transcriptomic program in glioblastoma tumor growth, invasion, and prognosis. J Nat Cancer Inst 2016; 108.
15 Cui W, Fowlis DJ, Bryson S, Duffie E, Ireland H, Balmain A et al. TGFβ1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531-542.
16 DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol 1997; 151: 671-677.
17 Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117-129.
18 Hakomori S. Aberrant glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res 1989; 52: 257-331.
19 Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K. Transforming growth factor-β1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 2001; 91: 964-971.
20 Herr P, Korniychuk G, Yamamoto Y, Grubisic K, Oelgeschlager M. Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. Development 2008; 135: 1813-1822.
21 Holgado E, Perez-Garcia J, Gion M, Cortes J. Is there a role for immunotherapy in HER2-positive breast cancer? NPJ Breast Cancer 2018; 4: 21.
22 Huang A, Dong J, Li S, Wang C, Ding H, Li H et al. Exosomal transfer of vasorin expressed in hepatocellular carcinoma cells promotes migration of human umbilical vein endothelial cells. Int J Biol Sci 2015; 11: 961-969.
23 Hull SR, Bright A, Carraway KL, Abe M, Hayes DF, Kufe DW. Oligosaccharide differences in the DF3 sialomucin antigen from normal human milk and the BT-20 human breast carcinoma cell line. Cancer Commun 1989; 1: 261-267.
24 Ikeda Y, Imai Y, Kumagai H, Nosaka T, Morikawa Y, Hisaoka T et al. Vasorin, a transforming growth factor β-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo. Proc Natl Acad Sci USA 2004; 101: 10732-10737.
25 Karlsson NG, Packer NH. Analysis of O-linked reducing oligosaccharides released by an in-line flow system. Anal Biochem 2002; 305: 173-185.
26 Kudo T, Ikehara Y, Togayachi A, Morozumi K, Watanabe M, Nakamura M et al. Up-regulation of a set of glycosyltransferase genes in human colorectal cancer. Lab Invest 1998; 78: 797-811.
27 Kumagai T, Katoh T, Nix DB, Tiemeyer M, Aoki K. In-gel beta-elimination and aqueous-organic partition for improved O- and sulfoglycomics. Anal Chem 2013; 85: 8692-8699.
28 Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res 2005; 65: 599-608.
29 Leong AS, Sormunen RT. Microwave procedures for electron microscopy and resin-embedded sections. Micron 1998; 29: 397-409.
30 Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 2006; 17: 41-58.
31 Li S, Li H, Yang X, Wang W, Huang A, Li J et al. Vasorin is a potential serum biomarker and drug target of hepatocarcinoma screened by subtractive-EMSA-SELEX to clinic patient serum. Oncotarget 2015; 6: 10045-10059.
32 Lloyd KO, Burchell J, Kudryashov V, Yin BW, Taylor-Papadimitriou J. Comparison of O-linked carbohydrate chains in MUC-1 mucin from normal breast epithelial cell lines and breast carcinoma cell lines: Demonstration of simpler and fewer glycan chains in tumor cells. J Biol Chem 1996; 271: 33325-33334.
33 Malapeira J, Esselens C, Bech-Serra JJ, Canals F, Arribas J. ADAM17 (TACE) regulates TGFβ signaling through the cleavage of vasorin. Oncogene 2011; 30: 1912-1922.
34 Man J, Yu X, Huang H, Zhou W, Xiang C, Huang H et al. Hypoxic Induction of Vasorin Regulates Notch1 Turnover to Maintain Glioma Stem-like Cells. Cell Stem Cell 2017.
35 Massague J. TGFβ in cancer. Cell 2008; 134: 215-230.
36 Moody AM, Chui D, Reche PA, Priatel JJ, Marth JD, Reinherz EL. Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell 2001; 107: 501-512.
37 Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nat Protoc 2007; 2: 1585-1602.
38 Moses H, Barcellos-Hoff MH. TGF-β biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol 2011; 3: a003277.
39 Muraoka-Cook RS, Kurokawa H, Koh Y, Forbes JT, Roebuck LR, Barcellos-Hoff MH et al. Conditional overexpression of active transforming growth factor β1 in vivo accelerates metastases of transgenic mammary tumors. Cancer Res 2004; 64: 9002-9011.
40 Muraoka-Cook RS, Shin I, Yi JY, Easterly E, Barcellos-Hoff MH, Yingling JM et al. Activated type I TGFβ receptor kinase enhances the survival of mammary epithelial cells and accelerates tumor progression. Oncogene 2006; 25: 3408-3423.
41 Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 2008; 133: 66-77.
42 Pereira ME, Kabat EA, Lotan R, Sharon N. Immunochemical studies on the specificity of the peanut (Arachis hypogaea) agglutinin. Carbohydr Res 1976; 51: 107-118.
43 Picco G, Julien S, Brockhausen I, Beatson R, Antonopoulos A, Haslam S et al. Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology 2010; 20: 1241-1250.
44 Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015; 15: 540-555.
45 Priatel JJ, Chui D, Hiraoka N, Simmons CJT, Richardson KB, Page DM et al. The ST3Gal-I sialyltransferase controls CD8(+) T lymphocyte homeostasis by modulating O-glycan biosynthesis. Immunity 2000; 12: 273-283.
46 Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med 2013; 274: 113-126.
47 Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem 2010; 397: 3457-3481.
48 Schmierer B, Hill CS. TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007; 8: 970-982.
49 Schneider F, Kemmner W, Haensch W, Franke G, Gretschel S, Karsten U et al. Overexpression of sialyltransferase CMP-sialic acid:Galbeta1,3GalNAc-R alpha6-Sialyltransferase is related to poor patient survival in human colorectal carcinomas. Cancer Res 2001; 61: 4605-4611.
50 Son SW, Song KH, Kwon HY, Kim KS, Kim CH, Oh KB et al. Transcriptional activation of pig Galbeta1,3GalNAc alpha2,3-sialyltransferase (pST3Gal I) gene by TGF-β1 in porcine kidney PK-15 cells. Biochem Biophys Res Commun 2011; 414: 159-164.
51 Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013; 32: 1478-1488.
52 Teicher BA. Malignant cells, directors of the malignant process: role of transforming growth factor-beta. Cancer Metastasis Rev 2001; 20: 133-143.
53 Thiery JP. Epithelial-mesenchymal transitions in development and pathologies. Curr Opin Cell Biol 2003; 15: 740-746.
54 Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc 2006; 1: 241-245.
55 Tsuji S. Molecular cloning and functional analysis of sialyltransferases. J Biochem 1996; 120: 1-13.
56 Varki A, Cummings RD, Aebi M, Packer NH, Seeberger PH, Esko JD et al. Symbol nomenclature for graphical representations of glycans. Glycobiology 2015; 25: 1323-1324.
57 Videira PA, Correia M, Malagolini N, Crespo HJ, Ligeiro D, Calais FM et al. ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines. BMC Cancer 2009; 9: 357.
58 Vrana JA, Stang MT, Grande JP, Getz MJ. Expression of tissue factor in tumor stroma correlates with progression to invasive human breast cancer: paracrine regulation by carcinoma cell-derived members of the transforming growth factor β family. Cancer Res 1996; 56: 5063-5070.
59 Wan YY, Flavell RA. 'Yin-Yang' functions of transforming growth factor-β and T regulatory cells in immune regulation. Immunological reviews 2007; 220: 199-213.
60 Wang PH, Lee WL, Juang CM, Yang YH, Lo WH, Lai CR et al. Altered mRNA expressions of sialyltransferases in ovarian cancers. Gynecol Oncol 2005; 99: 631-639.
61 Wu H, Shi XL, Zhang HJ, Song QJ, Yang XB, Hu WD et al. Overexpression of ST3Gal-I promotes migration and invasion of HCCLM3 in vitro and poor prognosis in human hepatocellular carcinoma. OncoTargets Ther 2016; 9: 2227-2236.
62 Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM et al. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 2004; 164: 451-459.
63 Yan X, Xiong X, Chen YG. Feedback regulation of TGF-beta signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50: 37-50.
64 Zhao Y, Hu J, Li R, Song J, Kang Y, Liu S et al. Enhanced NK cell adoptive antitumor effects against breast cancer in vitro via blockade of the transforming growth factor-β signaling pathway. Onco Targets Ther 2015; 8: 1553-1559.