研究生: |
詩如白 Sarkar, Sreerupa |
---|---|
論文名稱: |
使用生物影像與免疫分析法建構體外三維細胞團塊培養系統以研究腫瘤微環境中之促血管生成因子 Engineering in vitro 3D spheroid culture systems for analyzing pro-angiogenic factors in tumor microenvironments using bioimaging and immunoassays |
指導教授: |
董奕鍾
Tung, Yi-Chung 曾繁根 Tseng, Fan-Gang |
口試委員: |
李超煌
Lee, Chau-Hwang 陳壁彰 Chen, Bi-Chang 陳培菱 Chen, Peilin |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 骨肉瘤 、細胞團塊 、腫瘤微環境 、生物影像 、微流體 、免疫分析法 |
外文關鍵詞: | osteosarcoma, spheroid, tumor microenvironment, bioimaging, microfludics, immunoassay |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
三維細胞培養(3D cell culture)提供一個方便的體外研究工具,可用於了解腫瘤微環境和腫瘤存活機制。由於傳統的二維細胞培養無法模擬實體腫瘤異質及多種細胞的複雜結構,所以對於能大量進行三維細胞培養的實驗方式仍存在龐大的市場需求,希望藉以模擬並複製在實體腫瘤臨床上觀察到的複雜細胞反應和動態變化。在本研究論文中,利用微流體裝置建立了大量懸浮、三維骨肉瘤細胞 (MG-63) 團塊培養的方式,並應用於腫瘤微環境的體外模式比較分析。研究中,對於細胞團塊分泌的A型血管內皮細胞生長因子(VEGF-A)進行研究,比較正常生長和壓力條件下的表現差異。結果顯示三維細胞團塊的VEGF-A在低生長壓力時濃度較低,但在高生長壓力下則增加。這些觀察證實了我們的三維細胞團塊培養模式具有和二維模型相異的生物功能,可以觀察到在對細胞團塊施加壓力情形下,細胞反應並產生VEGF-A的表現變化,類似於在促血管生成的無血管腫瘤中所發現的反應。文獻顯示,VEGF-A的刺激通常是由實體腫瘤核心內缺氧區或低氧區的形成引起的,為了研究在三維細胞團塊中的低氧核心,我們運用多光子雷射掃描顯微鏡(MPLSM)並配合特別撰寫的程式碼來進行分析。使用市售的低氧敏感染料對三維細胞團塊的活細胞進行三維螢光影像進行比較,比較球體內部在貼附條件下以及接觸人類臍靜脈內皮細胞(HUVECs)層時,兩者的氧氣濃度差異。這個實驗結果發現了低氧核心在三維細胞團塊內的存在以及在內皮細胞的影響下會量測到更高的氧氣濃度。藉由此種間接螢光檢測,本研究提出了一種可以在活腫瘤球體內,研究氧氣微環境的有效方法。腫瘤核心的低氧狀態具有調節促血管生成之細胞訊號和內皮細胞增生的功能,根據臨床研究報告,我們知道通過細胞激素VEGF-A和低氧誘導因子(HIF)的影響,無血管性的實體腫瘤通過血管新生可以轉變成更具侵略性的具有血管的腫瘤階段。基於單培養腫瘤球體中低氧狀況下與VEGF-A調節的成功觀察,本研究更進一步建立了三維混合腫瘤/內皮共培養細胞團塊模型,以探索血管腫瘤中的內皮細胞生長。在實驗中,將標有綠色螢光蛋白的HUVECs(GFP-HUVECs)添加到預先形成的MG-63球體培養中,形成腫瘤細胞/內皮細胞混合細胞團塊。通過顯微鏡測量細胞團塊直徑和綠色螢光蛋白強度的變化觀察內皮細胞增生的情形,並觀察類似於血管腫瘤微環境VEGF-A分泌量及相對應濃度上升的現象。在本研究中開發的共培養實驗模型具有探索影響體外血管生成許多不同因子以及藥物測試和生物醫學應用的潛力。本論文中開發的三維細胞團塊培養模式,可作為癌症研究中探究更多促血管生成因子和細胞反應的有利工具。
Three-dimensional (3D) cell culture provides a convenient in-vitro tool to study tumor micro-environment and tumor survival mechanisms. Since traditional 2D in-vitro cell cultures are incapable of representing the multicellular, heterogenous complex structures of solid tumors, there is an unmet market demand for 3D cell culture models on a large scale to replicate the complex cellular responses and dynamic changes observed clinically in solid tumors. In this work, large scale production of floating, 3D osteosarcoma cell clusters or spheroid culture, is established using microfluidic devices, for comparative analysis of tumor microenvironment in-vitro. Vascular endothelial growth factor of type A (VEGF-A) of the spheroids, is studied under normal growth and stress conditions to investigate their roles in spheroid growth. The results show the VEGF-A concentration for the 3D spheroids, decreases for low stress levels but increases at high stress levels. These observations substantiate the functional capabilities of our 3D spheroid model to show cellular stress responses and generate VEGF-A variations, similar to responses found in pro-angiogenic avascular tumors.
Studies have shown that stimulation of VEGF-A is often triggered by formation of oxygen deprived zones or hypoxia zones inside the core of solid tumors. To study such hypoxia cores, in our 3D spheroids, we use multi-photon laser scanning microscopy (MPLSM) combined with a specific analysis code. 3D fluorescence-based live imaging of the spheroids is achieved using a commercially available hypoxia sensitive dye to compare the relative oxygenation within the spheroids under conditions of adhesion, and contact with monolayers of human umbilical vein endothelial cells (HUVECs). The work emphasizes the presence of hypoxia cores in 3D spheroids and better oxygenation under influence of endothelial cells. It also presents an efficient method to study oxygen microenvironments, within live tumor spheroids by indirect fluorescence detection.
Hypoxia in tumor cores, are held responsible for regulating pro-angiogenic cell signaling and endothelial proliferation. Clinical studies have reported the transformation of avascular solid tumors to a more aggressive vascular stage through angiogenesis through the influence of cytokine VEGF-A and hypoxia inducible factors. Based on the successful observations of VEGF-A modulations and hypoxia in the monocultured MG-63 tumor spheroids, a 3D mixed tumor/endothelial co-cultured spheroid model is established in our work to explore the endothelial growth found in vascular tumors. For the experiments, Green Fluorescence Protein tagged HUVECs (GFP-HUVECs) are added to pre-developed MG-63 spheroid seeds to form tumor/endothelial mixed spheroids. The variations of diameters and GFP intensity as measured by microscopy, suggest endothelial proliferation to occur, corresponding to surges observed in VEGF-A secretions, similar to events reported in microenvironments of vascular tumors. The coculture model developed in this study has the potential to unravel many different aspects of angiogenesis in-vitro, along with other drug testing and biomedical applications. The 3D spheroid models developed in this research work is suitable tool to study many more angiogenic factors and cellular responses for cancer research.
1. S. Yamagishi, Y. Koga, A. Sotokawauchi, N. Hashizume, S. Fukahori, T. Matsui and M. Yagi, Current Pharmaceutical Design, 2019, 25, 313-324.
2. H. Quentmeier, R. A. F. Macleod, M. Zaborski and H. G. Drexler, Leukemia, 2006, 20, 471-476.
3. D. Irimia and M. Toner, Integrative Biology, 2009, 1, 506-512.
4. G. E. Gortz, M. Horstmann, B. Aniol, B. Delos Reyes, J. Fandrey, A. Eckstein and U. Berchner-Pfannschmidt, Journal of Clinical Endocrinology & Metabolism, 2016, 101, 4834-4842.
5. R. Giavazzi, M. Foppolo, R. Dossi and A. Remuzzi, Journal of Clinical Investigation, 1993, 92, 3038-3044.
6. Y. Liu, R. M. Tamimi, L. C. Collins, S. J. Schnitt, H. L. Gilmore, J. L. Connolly and G. A. Colditz, Breast cancer research and treatment, 2011, 129, 175-184.
7. N. S. Taichman, S. Young, A. T. Cruchley, P. Taylor and E. Paleolog, Journal of Leukocyte Biology, 1997, 62, 397-400.
8. J. Pérez-Carreón and J. Meléndez-Zajgla, Molecular Oncology Principles and Recent Advances, 2012, DOI: 10.2174/978160805016111201010148, 148-162.
9. M. Kunz and S. Ibrahim, Molecular cancer, 2003, 2, 23.
10. L. Ostergaard, A. Tietze, T. Nielsen, K. R. Drasbek, K. Mouridsen, S. N. Jespersen and M. R. Horsman, Cancer Research, 2013, 73, 5618-5624.
11. L. Galluzzi, T. Yamazaki and G. Kroemer, Nature Reviews Molecular Cell Biology, 2018, 19, 731-745.
12. B. Poljšak and I. Milisav, Bosn J Basic Med Sci, 2012, 12, 122-126.
13. T. Y. Lee, T. G. Purdie and E. Stewart, Quarterly Journal of Nuclear Medicine, 2003, 47, 171-187.
14. Q. Zhang, Q. Yan, H. Yang and W. Wei, Genes Dis, 2019, 6, 328-332.
15. A. Carreau, B. El Hafny-Rahbi, A. Matejuk, C. Grillon and C. Kieda, J Cell Mol Med, 2011, 15, 1239-1253.
16. L. Holmquist-Mengelbier, E. Fredlund, T. Löfstedt, R. Noguera, S. Navarro, H. Nilsson, A. Pietras, J. Vallon-Christersson, Å. Borg, K. Gradin, L. Poellinger and S. Påhlman, Cancer Cell, 2006, 10, 413-423.
17. D. R. Senger, S. J. Galli, A. M. Dvorak, C. A. Perruzzi, V. S. Harvey and H. F. Dvorak, Science, 1983, 219, 983.
18. Y. Kubota, K. Takubo, T. Shimizu, H. Ohno, K. Kishi, M. Shibuya, H. Saya and T. Suda, Journal of Experimental Medicine, 2009, 206, 1089-1102.
19. J. S. Lewis, R. J. Landers, J. C. E. Underwood, A. L. Harris and C. E. Lewis, Journal of Pathology, 2000, 192, 150-158.
20. F. Heits, D. M. Katschinski, G. J. Wiedemann, C. Weiss and W. Jelkmann, International Journal of Oncology, 1997, 10, 333-337.
21. Z. G. Tian, Y. Zhuang, Z. Jin, F. Zhou, L. F. Zhu and P. C. Shen, European Review for Medical and Pharmacological Sciences, 2018, 22, 5460-5470.
22. M. Hockel and P. Vaupel, JNCI-J. Natl. Cancer Inst., 2001, 93, 266-276.
23. C. J. Schofield and P. J. Ratcliffe, Nat Rev Mol Cell Biol, 2004, 5, 343-354.
24. G. N. Song, D. B. Darr, C. M. Santos, M. Ross, A. Valdivia, J. L. Jordan, B. R. Midkiff, S. Cohen, N. Nikolaishvili-Feinberg, C. R. Miller, T. K. Tarrant, A. B. Rogers, A. C. Dudley, C. M. Perou and W. C. Zamboni, Clinical Cancer Research, 2014, 20, 6083-6095.
25. Li, Oncology Reports, 1994, DOI: 10.3892/or_00000167.
26. M. A. J. Chaplain, Mathematical and Computer Modelling, 1996, 23, 47-87.
27. H. Zhou, Y. H. Yang, N. O. Binmadi, P. Proia and J. R. Basile, Experimental Cell Research, 2012, 318, 1685-1698.
28. M. Wartenberg, P. Budde, M. de Marees, F. Grunheck, S. Y. Tsang, Y. Huang, Z. Y. Chen, J. Hescheler and H. Sauer, Laboratory Investigation, 2003, 83, 87-98.
29. P. J. Simpson-Haidaris and B. Rybarczyk, in Fibrinogen, eds. W. Nieuwenhuizen, M. W. Mosesson and M. P. M. DeMaat, 2001, vol. 936, pp. 406-425.
30. B. Shi, O. Andrukhov, S. Berner, A. Schedle and X. Rausch-Fan, Dent Mater, 2014, 30, 839-847.
31. Y.-C. Tung, A. Y. Hsiao, S. G. Allen, Y.-s. Torisawa, M. Ho and S. Takayama, Analyst, 2011, 136, 473-478.
32. M. V. Monteiro, V. M. Gaspar, L. P. Ferreira and J. F. Mano, Biomaterials Science, 2020, 8, 1855-1864.
33. A. Malayeri, C. Sherborne, T. Paterson, S. Mittar, I. O. Asencio, P. V. Hatton and F. Claeyssens, International Journal of Bioprinting, 2016, 2, 67-77.
34. K. Kyriakidou, G. Lucarini, A. Zizzi, E. Salvolini, M. Mattioli-Belmonte, F. Mollica, A. Gloria and L. Ambrosio, Journal of Bioactive and Compatible Polymers, 2008, 23.
35. R. Jarrahy, W. Huang, G. Rudkin, J. Lee, K. Ishida, M. Berry, M. Sukkarieh, B. Wu, D. Yamaguchi and T. Miller, American journal of physiology. Cell physiology, 2005, 289, C408-414.
36. A. De Luca, L. Raimondi, F. Salamanna, V. Carina, V. Costa, D. Bellavia, R. Alessandro, M. Fini and G. Giavaresi, Journal of experimental & clinical cancer research : CR, 2018, 37, 2.
37. H. Shimada, Y. Hashimoto, A. Nakada, K. Shigeno and T. Nakamura, Biochemical and biophysical research communications, 2012, 417, 659-664.
38. P. K. Chaudhuri, M. Ebrahimi Warkiani, T. Jing, Kenry and C. T. Lim, Analyst, 2016, 141, 504-524.
39. D. Wlodkowic and J. M. Cooper, Current Opinion in Chemical Biology, 2010, 14, 556-567.
40. A. Albanese, A. K. Lam, E. A. Sykes, J. V. Rocheleau and W. C. W. Chan, Nature Communications, 2013, 4.
41. C. C. Huang, Z. X. Liao, H. M. Lu, W. Y. Pan, W. L. Wan, C. C. Chen and H. W. Sung, Chemistry of Materials, 2016, 28, 9017-9025.
42. D. Khaitan and B. S. Dwarakanath, Expert Opinion on Drug Discovery, 2006, 1, 663-675.
43. Q. Z. Zhang, A. L. Nguyen, S. H. Shi, C. Hill, P. Wilder-Smith, T. B. Krasieva and A. D. Le, Stem Cells and Development, 2012, 21, 937-947.
44. F. Hirschhaeuser, H. Menne, C. Dittfeld, J. West, W. Mueller-Klieser and L. A. Kunz-Schughart, Journal of Biotechnology, 2010, 148, 3-15.
45. A. Brunet, L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. X. Lin, H. Tran, S. E. Ross, R. Mostoslavsky, H. Y. Cohen, L. S. Hu, H. L. Cheng, M. P. Jedrychowski, S. P. Gygi, D. A. Sinclair, F. W. Alt and M. E. Greenberg, Science, 2004, 303, 2011-2015.
46. C. Cernigliaro, A. D'Anneo, D. Carlisi, M. Giuliano, A. M. Gammazza, R. Barone, L. Longhitano, F. Cappello, S. Emanuele, A. Distefano, C. Campanella, G. Calvaruso and M. Lauricella, Cancers, 2019, 11.
47. T. Das, T. K. Maitia and S. Chakraborty, Integrative Biology, 2011, 3, 684-695.
48. J. L. Martindale and N. J. Holbrook, Journal of Cellular Physiology, 2002, 192, 1-15.
49. F. Mpekris, S. Angeli, A. P. Pirentis and T. Stylianopoulos, Biomech Model Mechanobiol, 2015, 14, 1391-1402.
50. S. Dai, A. Gocher, L. Euscher and A. Edelman, The FASEB Journal, 2016, 30, 714.719-714.719.
51. F. Wagner, B. M. Holzapfel, L. C. Martine, J. McGovern, C. A. Lahr, M. Boxberg, P. M. Prodinger, S. Grassel, D. Loessner and D. W. Hutmacher, Acta Biomaterialia, 2019, 89, 372-381.
52. A. K. Abdel-Aziz, S. Shouman, E. El-Demerdash, M. Elgendy and A. B. Abdel-Naim, Chemico-Biological Interactions, 2014, 217, 28-40.
53. J. X. Chen, H. Zeng, Q. H. Tuo, H. D. Yu, B. Meyrick and J. L. Aschner, American Journal of Physiology-Heart and Circulatory Physiology, 2007, 292, H1664-H1674.
54. S. Kliche and J. Waltenberger, Iubmb Life, 2001, 52, 61-66.
55. S. Doublier, D. C. Belisario, M. Polimeni, L. Annaratone, C. Riganti, E. Allia, D. Ghigo, A. Bosia and A. Sapino, BMC cancer, 2012, 12, 4-4.
56. N. Gomez-Roman, M. Y. Chong, S. K. Chahal, S. P. Caragher, M. R. Jackson, K. H. Stevenson, S. A. Dongre and A. J. Chalmers, Molecular Cancer Therapeutics, 2019, DOI: 10.1158/1535-7163.MCT-18-1320, molcanther.1320.2018.
57. S. S. Chen, C. H. Tang, M. J. Chie, C. H. Tsai, Y. C. Fong, Y. C. Lu, W. C. Chen, C. T. Lai, C. Y. Wei, H. C. Tai, W. Y. Chou and S. W. Wang, Cell Death & Disease, 2019, 10.
58. L. Guillaume, L. Rigal, J. Fehrenbach, C. Severac, B. Ducommun and V. Lobjois, Sci Rep, 2019, 9, 6597.
59. A. S. Nunes, A. S. Barros, E. C. Costa, A. F. Moreira and I. J. Correia, Biotechnology and Bioengineering, 2019, 116, 206-226.
60. H. Chaddad, S. Kuchler-Bopp, G. Fuhrmann, H. Gegout, G. Ubeaud-Sequier, P. Schwinte, F. Bornert, N. Benkirane-Jessel and Y. Idoux-Gillet, Exp Cell Res, 2017, 360, 138-145.
61. B. Patra, C. C. Peng, W. H. Liao, C. H. Lee and Y. C. Tung, Sci Rep, 2016, 6, 21061.
62. S. Sarkar, C. C. Peng, C. W. Kuo, D. Chueh, H. M. Wu, Y. H. Liu, P. L. Chen and Y. C. Tung, Rsc Advances, 2018, 8, 30320-30329.
63. B. Patra, Y. S. Peng, C. C. Peng, W. H. Liao, Y. A. Chen, K. H. Lin, Y. C. Tung and C. H. Lee, Biomicrofluidics, 2014, 8, 052109.
64. C. C. Peng, W. H. Liao, Y. H. Chen, C. Y. Wu and Y. C. Tung, Lab Chip, 2013, 13, 3239-3245.
65. K. Y. Hsieh, C. K. Wei and C. C. Wu, International Journal of Molecular Sciences, 2019, 20.
66. B.-H. D. Duffy AM, Harmey JH, Journal, 2000-2013.
67. P. G. Daft, Y. Yang, D. Napierala and M. Zayzafoon, PLOS ONE, 2015, 10, e0121568.
68. H. L. Goel and A. M. Mercurio, Nat Rev Cancer, 2013, 13, 871-882.
69. J. P. Piret, C. Lecocq, S. Toffoli, N. Ninane, M. Raes and C. Michiels, Experimental Cell Research, 2004, 295, 340-349.
70. L. C. Crowley, B. J. Marfell and N. J. Waterhouse, Cold Spring Harb Protoc, 2016, 2016.
71. Y. Liang and S. M. Hyder, Endocrinology, 2005, 146, 3632-3641.
72. J. E. Nör, J. Christensen, D. J. Mooney and P. J. Polverini, Am J Pathol, 1999, 154, 375-384.
73. A. Boudria, C. Abou Faycal, T. Jia, S. Gout, M. Keramidas, C. Didier, N. Lemaitre, S. Manet, J. L. Coll, A. C. Toffart, D. Moro-Sibilot, C. Albiges-Rizo, V. Josserand, E. Faurobert, C. Brambilla, E. Brambilla, S. Gazzeri and B. Eymin, Oncogene, 2019, 38, 1050-1066.
74. S. Hanyu, K. Sakuma and A. Tanaka, Journal of Hard Tissue Biology, 2019, 28, 281-288.
75. K. C. Murphy, S. Y. Fang and J. K. Leach, Cell and Tissue Research, 2014, 357, 91-99.
76. J. Adams, P. J. Carder, S. Downey, M. A. Forbes, K. MacLennan, V. Allgar, S. Kaufman, S. Hallam, R. Bicknell, J. J. Walker, F. Cairnduff, P. J. Selby, T. J. Perren, M. Lansdown and R. E. Banks, Cancer Research, 2000, 60, 2898.
77. E. M. Balzer, Z. Tong, C. D. Paul, W.-C. Hung, K. M. Stroka, A. E. Boggs, S. S. Martin and K. Konstantopoulos, FASEB J, 2012, 26, 4045-4056.
78. A. Y. Hsiao, Y.-s. Torisawa, Y.-C. Tung, S. Sud, R. S. Taichman, K. J. Pienta and S. Takayama, Biomaterials, 2009, 30, 3020-3027.
79. C. F. Buchanan, C. S. Szot, J. W. Freeman and M. N. Rylander, 2011.
80. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer, 1984, 95, 1-183.
81. B. H. Y. Yeung, F. H. Shek, N. P. Lee and C. K. C. Wong, Plos One, 2015, 10, 17.
82. J. Kolenda, S. S. Jensen, C. Aaberg-Jessen, K. Christensen, C. Andersen, N. Brunner and B. W. Kristensen, J Neurooncol, 2011, 103, 43-58.
83. G. Marino, M. Niso-Santano, E. H. Baehrecke and G. Kroemer, Nat Rev Mol Cell Biol, 2014, 15, 81-94.
84. J. K. Chen, S. F. Peng, K. C. Lai, H. C. Liu, Y. P. Huang, C. C. Lin, A. C. Huang, F. S. Chueh and J. G. Chung, In Vivo, 2019, 33, 801-810.
85. S. Rastogi, R. Kumar, S. R. Sankineani, K. Marimuthu, L. Rijal, S. Prakash, D. Jalan, S. A. Khan and M. C. Sharma, International Orthopaedics, 2012, 36, 2315-2321.
86. D. Shweiki, M. Neeman, A. Itin and E. Keshet, Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 768-772.
87. A. M. Baptista, A. F. D. F. Camargo, R. Z. Filippi, C. R. G. C. M. D. Oliveira, R. S. D. Azevedo Neto and O. P. D. Camargo, Acta Ortopédica Brasileira, 2014, 22, 250-255.
88. J. Lammli, M. Fan, H. G. Rosenthal, M. Patni, E. Rinehart, G. Vergara, E. Ablah, P. H. Wooley, G. Lucas and S.-Y. Yang, International orthopaedics, 2012, 36, 2307-2313.
89. R. I. Dmitriev and D. B. Papkovsky, Methods Appl Fluoresc, 2015, 3, 034001.
90. T. Anada, J. Fukuda, Y. Sai and O. Suzuki, Biomaterials, 2012, 33, 8430-8441.
91. P. Indovina, M. Collini, G. Chirico and M. T. Santini, FEBS Lett, 2007, 581, 719-726.
92. S. J. Zhang, M. Hosaka, T. Yoshihara, K. Negishi, Y. Iida, S. Tobita and T. Takeuchi, Cancer Research, 2010, 70, 4490-4498.
93. G. Khanal, S. Hiemstra and D. Pappas, Analyst, 2014, 139, 3274-3280.
94. M. Marenzana and T. R. Arnett, Bone Research, 2013, 1, 203-215.
95. A. V. Aleksandrova, N. P. Pulkova, T. N. Gerasimenko, N. Y. Anisimov, S. A. Tonevitskaya and D. A. Sakharov, Bulletin of Experimental Biology and Medicine, 2016, 160, 857-860.
96. K. C. Murphy, B. Hung, S. Browne-Bourne, D. J. Zhou, J. Yeung, D. C. Genetos and J. K. Leach, Journal of the Royal Society Interface, 2017, 14, 10.
97. J. H. Lee, Y. S. Han and S. H. Lee, Biomolecules & Therapeutics, 2016, 24, 260-267.
98. S. H. Kim, H. Kim, H. J. Ku, J. H. Park, H. Cha, S. Lee, J. H. Lee and J. W. Park, Redox Biology, 2016, 10, 211-220.
99. B. Hobson and J. Denekamp, British Journal of Cancer, 1984, 49, 405-413.
100. I. Kocherova, A. Bryja, P. Mozdziak, A. Angelova Volponi, M. Dyszkiewicz-Konwińska, H. Piotrowska-Kempisty, P. Antosik, D. Bukowska, M. Bruska, D. Iżycki, M. Zabel, M. Nowicki and B. Kempisty, J Clin Med, 2019, 8, 1602.
101. J. Ou, D. Guan and Y. Yang, Cell Mol Biol Lett, 2019, 24, 39.
102. K. Inomata and M. Honda, Materials (Basel), 2019, 12, 2869.
103. M. R. Soboleski, J. Oaks and W. P. Halford, FASEB J, 2005, 19, 440-442.
104. C. Coralli, M. Cemazar, C. Kanthou, G. M. Tozer and G. U. Dachs, Cancer Research, 2001, 61, 4784-4790.
105. H. Shoval, A. Karsch-Bluman, Y. Brill-Karniely, T. Stern, G. Zamir, A. Hubert and O. Benny, Sci Rep, 2017, 7, 10428.
106. A. Franchi, Clin Cases Miner Bone Metab, 2012, 9, 92-95.
107. C. Eilenberger, S. R. A. Kratz, M. Rothbauer, E.-K. Ehmoser, P. Ertl and S. Küpcü, MethodsX, 2018, 5, 781-787.