簡易檢索 / 詳目顯示

研究生: 拉 麒
Joshi, Rachit
論文名稱: 用於5G行動通訊系統之氮化鎵 class F/F-1功率放大器設計
GaN Class F/Inverse Class F Power Amplifier Design for 5G Mobile Communication Systems
指導教授: 徐碩鴻
Hsu, Shuo-Hung
口試委員: 高古信一郎
連羿韋
Takatani, Shinichiro
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 51
中文關鍵詞: MMICClass F功率放大器5G通訊
外文關鍵詞: MMIC, Class F, Power Amplifier, 5G Communication
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於單片式微波積體電路(MMIC)設計存在如高輸入損耗和大尺寸等性能問題,因此關於開關模式功率放大器(SMPA)的研究大多是基於PCB設計展開的。本篇論文報告了應用於5G通訊的Class F/F-1 單片式微波積體電路功率放大器的設計,該設計使用穩懋半導體有限公司的0.25微米氮化鎵標準製程。其中的匹配電路採用半集總之概念進行設計,包括了集總元件(例如電感和電容)以及傳輸線短截線。這使得放大器具有最佳性能以滿足例如頻寬、效能等關鍵規格。Class F功率放大器的最佳功率附加效率(PAE)為50%,增益為11.45 dB,並且在5.8 GHz處的輸出功率達到32.45dBm。其在5.8 GHz的工作頻率的分頻帶寬約為36.2%。Class F-1 功率放大器在2.9 dB 增益壓縮時的PAE達到43.4%。其在5.8 GHz的工作頻率的分頻帶寬約為26%。
    第二梯下線的晶片採用諧波偏振技術,並使用傳輸線和電容器。除此之外,我們還提出了一個新的理念,即利用穩懋氮化鎵製程中的背通技術來對第二梯下線晶片進行諧波調協。與第一梯相比,第二梯的晶片擁有更寬的頻寬和更小的面積。對於使用了新理念設計的第二梯晶片,量測結果顯示Class F功率放大器最大PAE達到67.4%,P1dB 為35.6 dBm,並且在6 GHz為工作頻率處得到6.5 dBm的飽和輸出功率(Psat)。


    Most of the research done in Switch Mode Power Amplifiers (SMPA) are based on the PCB design because of the performance issues such as high insertion loss and chip size associated with the MMIC design. In this thesis, class F and class F-1Monolithic Microwave Integrated Circuit (MMIC), amplifiers are designed for the 5 G applications using the WIN GaN 0.25 m technology. The matching circuit is design using the semi-lumped concept involving both the lumped components (such as inductors and capacitors) and transmission line stubs. This makes the amplifiers to have optimum performance addressing the key specifications such as bandwidth and efficiency of the amplifiers. The class F power amplifier shows the optimal PAE of 50%, 11.45 dB gain and 32.45 dBm output power at 5.8 GHz. The fractional bandwidth achieved for 5.8 GHz operating frequency is around 36.2 %. The class F-1power amplifier shows the PAE of 43.4 % at 2.9 dB gain compression. The fractional Bandwidth for 5.8 GHz operating frequency obtained is around 26 %. The 2nd tape out used the concept of harmonic biasing technique using transmission line and capacitors. In addition to these adopted design techniques, we propose a new idea of using the back via in the WIN GaN technology for harmonic tuning in the 2nd tape out. A very compact area and wide bandwidth could be achieved compare with the design in the first tape out. With the propose new design in the second tape out, the measured results show a maximum PAE up to 67.4%, P 1dB (output) of 35.6 dBm , and P sat of 36.5 dBm at 6.0 GHz for the class F PA.

    ABSTRACT ii 摘要 iii TABLE OF CONTENTS iv LIST OF FIGURES v LIST OF TABLES x Chapter I Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 1 Chapter II RF Power Amplifiers 2 2.1 Linear Power Amplifiers 2 2.1.1 Class-A Power Amplifier 2 2.1.2 Class-B Power Amplifier 3 2.1.3 Class-C Power Amplifier 4 2.1.4 Class-D Power Amplifier 5 2.2 Switch Mode Power Amplifier 6 2.2.1 Class E Power Amplifier 6 2.2.2 Class F/F-1 Power Amplifier 7 2.3 Summary 8 Chapter III Design and Analysis of Class F Power Amplifiers 10 3.1 Introduction 10 3.2 Proposed Circuit Design 13 3.3 Comparison of Measured and Simulated Results 17 3.4 Summary 20 Chapter IV Design and Analysis of Class F-1 Power Amplifiers 21 4. 1 Introduction 21 4.2 Proposed Circuit Design 23 4.3 Measurement Results 25 4.4 Summary 27 Chapter V Design and Analysis of the Class F Power Amplifier 28 5.1 Invented Circuit Designs 28 5.2 Results of Invented class F PA’s 34 5.2.1 Comparison of the Measured and Simulated Results 34 5.2.2 Measured Results of the remaining class F Chips 36 5.2.3 Broadband characteristics of class F PA 46 Chapter VI Conclusion and Future Work 49 References 50

    [1] Steve C. Cripps, “RF Power Amplifiers for Wireless Communications - 2nd ed”, 685 Canton Street Norwood, MA 02062: ARTECH HOUSE, INC, May 2006, p. 158.
    [2] R. Kubowicz, “Class E Power Amplifier”, Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada, 2000.
    [3] K. Chen and D. Pertoulis, “A 3.1-GHz class-F Power Amplifier with 82% Power-Added-Efficiency”, IEEE Microw. Wireless Compon. Lett., vol. 23, no. 8, pp. 436–438, Aug. 2013.
    [4] S. Gao, H. Xu, U. K. Mishra, R. A. York, "MMIC Class-F Power Amplifiers using Field-Plated AIGaN/GaN HEMTs", IEEE Compound Semiconductor Integrated Circuit Symposium, 2006.
    [5] M. Litchfield and Z. Popovic, “Multi-level Chireix Outphasing GaN MMIC PA”, in Proc. IEEE Compound Semiconductor Integr. Circuit Symp, Oct. 2015, pp. 1–4.
    [6] Zomorrodian V, Mishra U K and York R, “A High Efficiency Class F MMIC Power Amplifier at 4.0 GHz using AlGaN/GaN HEMT Technology”, IEEE Compound Semiconductor Integrated Circuit Symp. (Piscataway, NJ, USA: IEEE) p4.
    [7] Gayle Collins, Jeremy Fisher, Fabian Radulescu ,“C-Band and X-Band Class F, F-1 GaN MMIC PA
    Design for Envelope Tracking Systems”, Microwave Conference (EuMC), 2015 European.
    [8] W. S. Kopp and S. D. Pritchett, “High Efficiency Power Amplification for Microwave and Millimeter Frequencies”, in MTTS Znt. Microwave Symp., Dig., 1989, pp. 857-858.
    [9] M. M .Ebrahimi; M. Helaoui; “F. M. Ghannouchi “Efficiency Enhancement of a WiMAX Switching Mode GaN Power Amplifier through Layout Optimization of Distributed Harmonic Matching Networks,” Microwave Integrated Circuits Conference, 2009. EuMIC 2009, European.
    [10] P. Colantonio, F. Giannini, E. Limiti, and V. Teppati, "An Approach to Harmonic Load- and Source-Pull Measurements for High-Efficiency PA Design", IEEE Trans. Microw. Theory Tech., Vol. 52, Jan. 2004, pp. 191-198.
    [11] J. B. King and T. J. Brazil, “Nonlinear Electro Thermal GaN HEMT Model Applied to High-Efficiency Power Amplifier Design”, IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 444–454, Jan. 2013.
    [12] F. Lepine, A. Adahl, and H. Zirath, "L-band LDMOS Power Amplifiers Based on an Inverse Class-F Architecture", IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 2007-2012, June 2005.
    [13] Ouyahia, A., Duperrier, C., Tolant, C., Temcamani, F., and Eudeline, Ph., “A 71.9% Power-Added-Efficiency Inverse Class-F LDMOS”, 2006 IEEE MTT-S Int. Microwave Symp. Dig., pp.1542-1545, June 2006.
    [14] A. Grebennikov, “High-efficiency Transmission-Line GaN HEMT Inverse Class F Power Amplifier for Active Antenna Arrays”, in Proc. Asia–Pacific Micow. Conf., Dec. 2009, pp. 317–320.
    [15] K. Kuroda, R. Ishikawa, and K. Honjo, “Parasitic Compensation Design Technique for a C-band GaN HEMT Class-F Amplifier”, IEEE Trans. Microw. Theory Tech., vol. 58, no. 11, pp. 2741–2750, Nov. 2010.
    [16] M. Ozalas, “High Efficiency Class-F MMIC Power Amplifiers at Kuband”, IEEE Wireless and Microwave Technology, April 2005.
    [17] Yang Wang, Taijun Liu, Yan Ye, Qian Xu, Ruiyang Li, YaqinGuo, Tianyi Pan, “Design and Linearization of High-Efficiency Inverse Class-F RF Power Amplifiers”, College of Information Science and Engineering, Ningbo University, Ningbo 315211, China.
    [18] J. Wang, Y. Xu and X. Zhu, “Digital Predistorted Inverse Class-F GaN PA with Novel PAPR Reduction Technique”, IEEE MTT-S Intern. Microw. Sympos. 2011.
    [19] J. Joh, J. A. del Alamo, U. Chowdhury, T.-M. Chou, H.-Q. Tserng, and J. L. Jimenez, “Measurement of Channel Temperature in GaN High Electron Mobility Transistors”, IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 2895–2901, Dec. 2009.
    [20] AWR Webinar on “Design of Class F, Inverse Class F AND Continuous Class F Power Amplifiers using Cree GaN HEMTs and Microwave Office Software to Optimize Gain, Efficiency and Stability”.
    [21] E. Cipriani , P. Colantonio and F. Giannini, “Effects of Gate Bias Voltage and Compression Level on an X-band MMIC Class F−XPA”, European Microwave Conference (EuMC), Oct. 2011.
    [22] V. Vadalà, A. Raffo, S. Di Falco, G. Bosi, A. Nalli, and G. Vannini, “A load-pull Characterization Technique Accounting for Harmonic Tuning”, IEEE Trans. Microw. Theory Techn, vol. 61, no. 7, pp. 2695–2704, Jul. 2013.
    [23] G. Nikandish, E. Babakrpur, and A. Medi, “A Harmonic Termination Technique for Single- and Multi-Band High-Efficiency Class-F MMIC Power Amplifiers”, IEEE Trans. Microwave Theory Tech., vol. 62, no. 5, pp. 1212–1220, May 2014.
    [24] P. Chen, M. Yang, J. Xia, Y. Guo, and A. Zhu, “Highly Efficient Broadband Continuous Inverse Class-F Power Amplifier Design using Modified Elliptic Low Pass Filtering Matching Network,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 5, pp. 1515–1525, Mar. 2016.
    [25] Z. Lu and W. Chen, “Resistive Second-Harmonic Impedance Continuous Class-F Power Amplifier with over One Octave Bandwidth for Cognitive Radios”, IEEE J. Emerging Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 489–497, Dec. 2013.

    QR CODE