研究生: |
張智揚 |
---|---|
論文名稱: |
錳摻雜之二氧化矽薄膜以及氮氧化鈦薄膜應用於非揮發性電阻式記憶體之研究 Researching on Mechanism of SiO2:Mn and Titanium Oxynitride in Resistive Random Access Memory |
指導教授: | 連振炘 |
口試委員: |
張鼎張
黃惠良 戴亞翔 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 105 |
中文關鍵詞: | 電阻式記憶體 、載子傳輸 、定電壓應力 、硝酸氧化 、快速熱退火 |
外文關鍵詞: | Resistive Random Access Memory, Carrier Transport, Constant Voltage Stress, Nitric Acid Oxidation, Rapid Thermal Annealing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
記憶體在科技產業中扮演舉足輕重的地位。現今最廣泛使用的非揮發性記憶體為快閃式記憶體,但快閃式記憶體也面臨了尺寸上難以微縮的問題。而在下一世代的記憶體候選人中,電阻式記憶體是相當被看好的次世代記憶體,因其具有下列記憶體所需的特點:很好的可靠度,操作速度快(10ns),低操作電壓(program/erase:1-2V),高密度(4F2),結構簡單。當然以一個正在發展中的元件,RRAM本身也有許多待解決的問題,本論文所做的研究方向,是以電性量測上研究其特性,試著釐清電阻式記憶體內部的物理機制。
第一部分為研究二氧化矽薄膜內參雜少量錳金屬(SiO2 : Mn),從I-V Curve中觀察其特性,並輔以Current Fitting萃取其傳導機制,過程中發現此元件在機台無外加限流情況時,元件本身有自我限流的特性,而我們使用適當的電壓、時間,進行定電壓stress能將低組態的電流抑制。
第二部分為研究鈦的氮氧化合物作為轉態層的RRAM研究。製程與第一部分的方法不同,是以硝酸氧化的方式,在氮化鈦電極上使氮化鈦形成氮氧化合物,作為電阻式記憶體的轉態層再放入RTA一分鐘400℃使其退火。此元件為一forming free的電阻式記憶體,在實際應用上相當有幫助。且此元件本身的操作電壓為-2~+1.5V,限流更能壓低至數十uA,很符合電阻式記憶體所需的低電壓,低電流操作。對其傳導方式,經由實驗可發現為介面效應的傳導方式,並從快速量測(Fast IV)中探討波形對於可靠度的影響,進而改進其可靠度。
Memory plays an important role in high technology industry. Flash memory is the most popular non-volatile memory in all memory. However, as the CMOS scaling down, Flash memory faces some issues like leakage current from thin gate oxide. The Resistive Random Access Memory (RRAM) has high potential in the candidates of next-generation memory. RRAM has some advantage: good endurance, short Write - Erase time, low program voltage (program/erase:1~2V), high density(4F2) and simple structure. As a developing device, RRAM still has lots of issues to solve. In the thesis, we are going to discuss the properties by electric measurement and to clarify the physical mechanism.
The part 1 is the researching on the SiO2:Mn film. By discussing the property of I/V curve and the current fitting, we can clarify the physic mechanism. An special property is found in the researching. The RRAM has a property of self current compliance even if no applied compliance current in the measure instrument. The current can be reduced by constant voltage stress.
The part 2 is the researching on the titanium oxynitride as the switching layer of RRAM. The titanium oxynitride is made by Nitride Acid Oxidation technology, and treat in RTA 400℃for 1 minute. The device is useful in practical application due to its forming free; low current operation(under 10-5uA). The device is interface type RRAM discussed by the experiment. In the end, we improve the endurance by changing the pulse condition from the Fast IV measurement.
[1] D. Kahng and S. M. Sze, A floating-gate and its application to memory devices,
the Bell System Technical Journal, 46, #4 (1967), pp. 1288–1295.
[2] Dudley A. Buck, "Ferroelectrics for Digital Information Storage and Switching."
Report R-212, MIT, June 1952.
[3] D.Takashima et.al., ISSCC, 787-792,May 1998
[4] Iwao Kunishima et.al.
[5] I. G Baek, M.S.L., S. Seo, M. J. Lee, D. H. Seo, D. S. Suh, J. C. Park, IEDM Tech.Dig., 2005: p. 587-590
[6] Memory Devices Using Bistable Resistivity in Amorphous As-Te-Ge Films" C. H.
Sie, PhD dissertation, Iowa State University, Proquest/UMI publication #69-20670,
January 1969
[7] C.H. Sie, A.V. Pohm, P. Uttecht, A. Kao and R. Agrawal, IEEE, MAG-6, 592,
September 1970
[8] Stefan Lai and Tyler Lowrey, IEDM Tech. Dig., pp. 803-806 (2001)
[9] Moodera J S, Kinder L R, Wong T M and Meservey R, Phys. Rev. Lett. 74, 3273,
1995.
[10] Moodera J S and Mathon G, J. Magn. Magn. Mater. 200, 248, 1999.
[11] B. J. Choi, JOURNAL OF APPLIED PHYSICS 98, 033715, 2005
[12] H. Y. Lee et al, IEEE Electron Device Lett. 31, 44 _2010_.
[13] W. C. Chien et al, IEEE Electron Device Lett. 31, 126 _2010_.
[14] Y. S. Chen et al, Int. Electron Device Meet. 2009, 105.
[15] H. Y. Lee et al, Int. Electron Device Meet. 2010, 460.
[16] S. Q. Liu, N. J. Wu, and A. Lgnatiev, Appl. Phys. Lett. 76. 2749 (2000)
[17] A. Sawa et al, Appl. Phys. Lett. 85, 4073 (2004)
[18] A. Beck et al, Appl. Phys. Lett. 77, 139 (2000)
[19] Meijer, G. I.et al, Phys. Rev. B72, 155102 (2005)
[20] S. Seo, M. J. Lee et al, Applied Physics Letters, 85(23), 2004
[21] D. Lee, D.-J. Seong, H. J. Choi, I. Jo, R. Dong, W. Xiang, S. Oh, M. Pyun, S.
Seo, S. Heo, M. Jo, D.-K. Hwang, H. K. Park, M. Chang, and M. Hasan, Tech.
Dig. - Int. Electron Devices Meet. 2006, 796.
[22] D. S. Jeong, H. Schroeder, and R. Waser, Appl. Phys. Lett. 89, 082909 _2006_.
[23] B. J. Choi, D. S. Jeong, S. K. Kim, C. Rohde, S. Choi, J. H. Oh, H. J. Kim, C. S.
Hwang, K. Szot, R. Waser, B. Reichenberg, and S. Tiedke, J. Appl. Phys. 98,
033715 _2005_.
[24] J. B. Yun, S. Kim, S. Seo et al, Phys. Status Solidi (RRL) 2007, 1, 280
[25] Rainer Waser, Masakazu Aono, VOL 6, November 2007, Nature Materials
[26] S. Seo, M. J. Lee et al., Reproducible resistance switching in polycrystalline NiO
films, Applied Physics Letters, 85(23), 2004
[27] U. Russo et al., IEEE IEDM, 2007, 775.
[28] Ugo Russo, Carlo Cagli, and Andrea L. Lacaita IEEE Transcations on Elecctron
Devices, VOL. 56, NO. 2, February 2009.
[29]Watanabe, T et al. Appl. Phys. Lett. 78, 3738-3740 (2001)
[30] M. Fujimoto, H. Koyama et al., Applied Physics Letters, 89, 223509, 2006
[31] C. Yoshida, K. Tsunoda et al., Applied Physics Letters, 91, 2235110, 2007
[32] B. Gao, S. Yu, N. Xu, L.F. Liu, B. Sun, X.Y. Liu, R.Q. Han, J.F. Kang, B. Yu,
Y.Y. Wang, IEDM Tech. Dig., (2008).
[33] June Sik Kwak et al, Applied Physics Letters, 96, 223502, 2010
[34] Akihito Sawa, material today, JUNE 2008 | VOLUME 11 | NUMBER 6
[35] Beck, A., et al., Appl. Phys. Lett. (2000) 77, 139
[36] Fujii, T., et al., Appl. Phys. Lett. (2005) 86, 139, 012107
[37] Sawa, A., et al., Appl. Phys. Lett. (2005) 86, 139, 012107
[38] X.A. Tran, B. Gao, Wang,K.L. Pey, et al., IEDM11-716
[39] Jiun-Jia Huang, Yi-Ming Tseng , et al., 978-1-4577-0505-2/11/$26.00 ©2011 IEEE
[40] D. P. Das A K. M. Parida ,et al, Catal Lett (2009) 128:111–118
[41] B. Shokri 1, M. Abbasi Firouzjah 1, S. I. Hosseini FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD
[42] S. CIAMPI - V. DI CASTRO ,et al,Surface Science, Vol 331-333, 294-299, 1995.
[43] D. BRIGGS - M.P. SEAH ,et al, John WILLEY & SONS. Vol. 1, second edition 1993.
[44] B.F. DZHURINSKII - D. GATI ,et al Russian Journal of Inorganic Chemistry, Vol 20, 2307-2314, 1975.
[45] Y. KANEDO - Y. SUGINOHARA ,et al Graduate School, Tohoku University, Sendai, 285-289, En Japonais!, 1977
[46] Yu-Ting Tsai,Ting-Chang Chang, et al. Appl. Phys.Lett (2011).99, 092106
[47]黃偉立, 新穎材料DyMn2O5 在電阻式記憶體上的機制研究與應用,交通大學,碩士論文,2011
[48] Rene Meyer, Lawrence Schloss IEEE(2008) 978-1-4244-2411-5/08/
[49] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, et al. "Complementary resistive switches for passive nanocrossbar memories," Nature Mater., vol. 9, ppl.403-406, 2010.
[50]Chih-Wei Hu,a Ting-Chang Chang,b,c,*,z Chun-Hao Tu,a Yang-Dong Chen,d Chao-Cheng Lin,a Min-Chen Chen,b Jian-Yang Lin,d Simon M. Sze,a and Tseung-Yuen Tseng, Journal of The Electrochemical Society, 157 _3_ H332-H336 _2010_
[51] Chih-Wei Hu, Ting-Chang Chang, Chun-Hao Tu, Yang-Dong Chen, Chao-Cheng Lin, Min-Chen Chen, Jian-Yang Lin, Simon M. Sze, and Tseung-Yuen Tseng ,et al. IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 10, NO. 5, SEPTEMBER 2011
[52] Yoshikazu Hirose,† Toshinori Mori,† Yuka Morishita,† Atsushi Itadani,† Takayuki Kudoh,‡Takahiro Ohkubo,† Tomoko Matsuda,§ Shigeharu Kittaka,§ and Yasushige Kuroda*,,et al. Inorganic Chamistry, Inorg. Chem. 2011, 50, 9948–9957
[53] Chang Houn Rhee and Jae Sung Lee ,et al. Materials Research Society2005, 10.1557/JMR.2005.0376