簡易檢索 / 詳目顯示

研究生: 謝逸平
論文名稱: 利用磁致動器研究磁性薄膜磁化翻轉現象
The Study of Magnetization Reversal of Magnetic thin film Using Magnetic Actuator
指導教授: 葉銘泉
口試委員: 陳榮順
蔡佳霖
葉維磬
衛榮漢
學位類別: 博士
Doctor
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 中文
論文頁數: 182
中文關鍵詞: 磁致動器懸臂樑磁性薄膜磁化翻轉
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個新的方法去研究磁性薄膜磁化翻轉現象:利用懸臂樑結構在外加磁場下的彎曲變化去觀察懸臂樑上磁性薄膜磁化翻轉現象。本論文成功利用鐵薄膜在外加磁場下使得懸臂樑結構彎曲,換句話說,懸臂樑結構在外加磁場下彎曲的行為可以用來分析鐵薄膜磁特性,另外,如果要利用鐵薄膜在外加磁場下產生的磁扭力矩去使得懸臂樑結構彎曲的話,需要兩個條件:磁形狀異向性的設計和靈敏的懸臂樑結構製作。
    本論文主要探討的主題有:一、外加磁場方向和單層鐵薄膜磁化翻轉間的關聯,二、外加磁場方向和多層鐵薄膜磁化翻轉間的關聯,三、鐵薄膜體積和單層鐵薄膜磁化翻轉間的關聯,四、懸臂樑寬度和單層鐵薄膜磁化翻轉間的關聯,五、結構和多層鐵薄膜磁化翻轉間的關聯,六、夾子結構和單層鐵薄膜磁化翻轉間的關聯。
    本論文也提出一個模擬的方法去驗證實驗結果:利用Object Oriented MicroMagnetic Framework (OOMMF)軟體去分析鐵薄膜在外加磁場下產生的磁扭力矩,然後在把OOMMF軟體得到的磁扭力矩利用ANSYS軟體去分析懸臂樑結構的位移量,在結合兩套軟體之後,我們可以得到懸臂樑結構在外加磁場下產生的位移變化量。


    A new method that the magnetization reversal of magnetic thin film was observed by the deflection of magnetic actuator under external magnetic filed to study the magnetization reversal of magnetic thin film is proposed. The magnetic actuator was bent by magnetic thin film, when it was placed in an external magnetic filed. On the other hand, the magnetic property of magnetic thin film can be analyzed by the deflection of magnetic actuator. The magnetic actuator is bent by magnetic torque produced by ferromagnetic thin film under an external magnetic field owing to the fabrication of a highly sensitive microcantilever and the design of a high magnetic shape anisotropy.
    These were discussed that the directions of the magnetic field can affect the magnetization reversal of magnetic thin film, that the directions of the magnetic field can affect the magnetization reversal of magnetic thin films, that the volume of magnetic thin film can affect the magnetization reversal of magnetic thin film, that the width of microcantilever can affect the magnetization reversal of magnetic thin film, that the shape of magnetic actuator can affect the magnetization reversal of magnetic thin films, and that the shape of tweezers can affect the magnetization reversal of magnetic thin films.
    A method of simulation that the magnetic torque under external magnetic field was analyzed by OOMMF, and then the deflection of magnetic actuator under the magnetic torque was analyzed by ANSYS was proposed to prove the experimental results.

    摘要 I Abstract II 目 錄 III 圖目錄 VI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.2.1 論文架構 3 1.3 文獻回顧 5 1.3.1 勞倫芝力 5 1.3.2 磁扭力矩 12 1.3.3 磁場梯度 26 第二章 致動原理分析 33 2.1 磁性材料分析 33 2.1.1 磁性物質的種類 35 2.1.2 磁區 39 2.1.3 磁膜形狀的設計 45 2.2 扭力矩分析 49 2.2.1 磁扭力矩 49 2.2.2 機械扭力矩 52 2.2.3 模擬分析 55 第三章 實驗方法 57 3.1 實驗設備 57 3.1.1 製程設備 57 3.1.2 量測設備 64 3.2 製程步驟 67 3.2.1 製程一 67 3.2.2 製程二 71 3.3 實驗問題 74 3.3.1 翹邊問題 74 3.3.2 蝕刻問題 89 3.3.3 掏空問題 96 第四章 結果與討論 99 4.1 單層橢圓鐵膜 99 4.2 多層橢圓鐵膜 113 4.3 單層矩形鐵膜I 129 4.4 單層矩形鐵膜II 142 4.5 半夾子結構 148 4.6 夾子結構 157 第五章 結論 166 參考文獻 171

    [1] Y. Suzuki, “Fabrication and evaluation of flexible microgripper,” Jpn. J. Appl. Phys., vol. 33, pp. 2107-2112, 1994
    [2] Y. Suzuki, “Underwater performance of flexible microgripper and fine particle manipulation,” Jpn. J. Appl. Phys., vol. 33, pp. 6056-6057, 1994
    [3] Y. Suzuki, “Flexible microgripper,” International Journal of the Japan Society for Precision Engineering, vol. 29, pp. 10-13, 1995
    [4] Y. Suzuki, “Flexible microgripper and its application to micro-measurement of mechanical and thermal properties,” IEEE 9th Annual International Workshop on Micro Electro Mechanical Systems, pp. 406-411, 1996
    [5] Y. Suzuki, “A drying method using naphthalene for flexure microgripper fabrication,” Jpn. J. Appl. Phys., vol. 35, pp. L1468-L1471, 1996
    [6] D. W. Lee, T. Ono, and M. Esashi, “Cantilever with integrated resonator for application of scanning probe microscope,” Sens. Actuators A, vol. 83, pp. 11-16, 2000
    [7] F. Keplinger, S. Kvasnic, A. Jachimowicz, F. Kohl, J. Steurer, and H. Hauser, “Lorentz force based magnetic field sensor with optical readout,” Sens. Actuators A, vol. 110, pp. 112-118, 2004
    [8] F. Keplinger, S. Kvasnic, H. Hauserm, and R. Grossinger, “Optical readouts of cantilever bending designed for high magnetic field application,” IEEE Trans. Magn., vol. 39, pp. 3304-3306, 2003
    [9] A. Agoston, F. Keplinger, and B. Jakoby, “Evaluation of a vibrating micromachined cantilever sensor for measuring the viscosity of complex organic liquids,” Sens. Actuators A, vol. 123-124, pp. 82-86, 2005
    [10] M. Im, I. J. Cho, K. S. Yun, and E. Yoon, “An electromagnetically-actuated polymer micro-pen for picoliter biological assay patterning,” Transducers '05, Digest of Technical Papers, vol. 1-2, pp. 1588-1591, 2005
    [11] M. Im, I. J. Cho, K. S. Yun, and E. Yoon, “Electromagnetic actuation and microchannel engineering of a polymer micropen array integrated with microchannels and sample reservoirs for biological assay patterning,” Appl. Phys. Lett., vol. 91, pp. 124101, 2007
    [12] D. Lange, C. Hagleitner, C. Herzog, O. Brand, and H. Baltes, “Electromagnetic actuation and MOS-transistor sensing for CMOS-integrated micromechanical resonators,” Sens. Actuators A, vol. 103, pp. 150-155, 2003
    [13] Y. Li, C. Vancura, C. Hagleitner, J. Lichtenberg, O. Brand, and H. Baltes, “Very high Q-factor in water achieved by monolithic, resonant cantilever sensor with fully integrated feedback,” Proceedings of the IEEE Sensors 2003, vol. 1-2, pp. 809-813, 2003
    [14] R. Sunier, T. Vancura, Y. Li, K. U. Kirstein, H. Baltes, and O. Brand, “Resonant magnetic field sensor with frequency output,” J. Microelectronmech. Syst., vol. 5, pp. 1098-1107, 2006
    [15] O. Enders, F. Korte, and H. A. Kolb, “Lorentz-force-induced excitation of cantilevers for oscillation-mode scanning probe microscopy,” Surf. Interface Anal., vol. 36, pp. 119-123, 2004
    [16] S. Jeon, Y. Braiman, and T. Thundat, “Torsional spring constant obtained for an atomic force microscope cantilever,” Appl. Phys. Lett., vol. 84, pp. 1795-1797, 2004
    [17] S. Jeon, Y. Braiman, and T. Thundat, “Cross talk between bending, twisting, and buckling modes of three types of microcantilever sensors,” Rev. Sci. Instrum., vol. 75, pp. 4841-4844, 2004
    [18] D. Jin, X. Li, J. Liu, G. Zuo, Y. Wang, M. Liu, and H. Yu, “High-mode resonant piezoresistive cantilever sensors for tens-femtogram resoluble mass sensing in air,” J. Micromech. Microeng., vol. 16, pp. 1017-1023, 2006
    [19] D. Jin, J. Liu, X. Li, M. Liu, G. Zuo, Y. Wang, H. Yu, and X. Ge, “Tens femtogram resoluble piezoresistive cantilever sensors with optimized high-mode resonance excitation,” 2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, vol. 1-3, pp. 832-836, 2006
    [20] D. Jin, X. Li, H. Bao, Z. Zhang, Y. Wang, H. Yu, and G. Zuo, “Integrated cantilever sensors with a torsional resonance mode for ultraresoluble on-the-spot bio/chemical detection,” Appl. Phys. Lett., vol. 90, pp. 041901, 2007
    [21] Z. Zhang, H. Bao, H. Yu, and X. Li, “ng/ml-levelalpha-fetoprotein immuno-detection with torsion-mode cantilever sensors for early-stage heptocellular carcinoma diagnosis,” Transducers '07 & Eurosensors Xxi, Digest of Technical Papers, vol. 1-2, pp. 1785-1788, 2007
    [22] D. Jin, X. Li, Z. Zhang, H. Bao, Y. Wang, J. Liu, and H. Yu, “Intergrated resonant cantilever sensors with 2(nd) torsion-mode for fg-level resoluble biomedical detection,” Proceedings of the IEEE Twentieth Annual International Conference on Micro Electro Mechanical Systems, vol. 1-2, pp. 298-301, 2007
    [23] H. Yu and X. Li, “Bianalyte mass detection with a single resonant microcantilever,” Appl. Phys. Lett., vol. 94, pp. 011901, 2009
    [24] Y. Liu, X. Li, Z. Zhang, G. Zuo, Z. Chang, and H. Yu, “Nanogram per milliliter-level immunologic detection of alpha-fetoprotein with integrated rotating-resonance microcantilevers for early-stage diagnosis of heptocellular carcinoma,” Biomedical Microdevices, vol. 11, pp. 183-191, 2009
    [25] Y. Yang, X. Xia, X. Gan, P. Xu, H. Yu, and X. Li, “Nano-thick resonant cantilevers with a novel specific reaction-induced frequency-increase effect for ultra-sensitive chemical detection,” J. Micromech. Microeng., vol. 20, pp. 055022, 2010
    [26] J. W. Judy, R. S. Muller, and H. H. Zappe, “Magnetic microactuation of polysilicon flexure structure,” J. Microelectromech. Syst., vol. 4, pp. 162-169, 1995
    [27] J. W. Judy and R. S. Muller, “Magnetic microactuation of torsional polysilicon structures,” Sens. Actuators A, vol. 53, pp. 392-397, 1996
    [28] J. W. Judy and R. S. Muller, “Magnetically actuated, addressable microstructures,” J. Microelectromech. Syst., vol. 6, pp. 249-256, 1997
    [29] H. H. Yang, N. V. Myung, J. Yee, D. Y. Park, B. Y. Yoo, M. Schwartz, K. Nobe, and J. W. Judy, “Ferromagnetic micromechanical magnetometer,” Sens. Actuators A, vol. 97-98, pp. 88-97, 2002
    [30] J. K. Yee, H. H. Yang, and J. W. Judy, “Dynamic response and shock resistance of ferromagnetic micromechanical magnetometers,” 15th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2002), pp. 308-311, 2002
    [31] J. K. Yee, H. H. Yang, and J. W. Judy, “Shock resistance of ferromagnetic micromechanical magnetometers,” Sens. Actuators A, vol. 103, pp. 242-252, 2003
    [32] J. Zendejas, J. Gianvittorio, B. Yoo, Y. R. Samii, K. Nobe, and J. W. Judy, “Ferromagnetic MEMS arrays for reconfigurable frequency selective surfaces,” 7th International Symposium on Magnetic Materials, Processes and Devices/Electrodeposition of Alloy Symposium, vol. 2002, pp. 171-187, 2003
    [33] D. J. Vasquez and J. W. Judy, “Zero-power magnetometers with remote optical interrogation,” 17th IEEE International Conference on Micro Electro Mechanical Systems, pp. 109-112, 2004
    [34] J. M. Zendejas, J. P. Gianvittorio, Y. R. Samii, and J. W. Judy, “Magnetic MEMS reconfigurable frequency-selective surfaces,” J. Microelectromech. Syst., vol. 15, pp. 613-623, 2006
    [35] D. J. Vasquez and J. W. Judy, “Scaling magnetic actuators beyond the single-domain limit,” IEEE International Conference of Nano/Micro Engineered and Molecular Systems, vol. 1-3, pp. 1404-1409, 2006
    [36] D. J. Vasquez and J. W. Judy, “Optically-interrogated zero-power MEMS magnetometer,” J. Microelectromech. Syst., vol. 16, pp. 336-343, 2007
    [37] D. J. Vasquez and J. W. Judy, “Flexure-based nanomagnetic actuators and their ultimate scaling limits,” 21st IEEE International Conference on Micro Electro Mechanical Systems, pp. 737-741, 2008
    [38] C. Liu, “Development of surface micromachined magnetic actuators using electroplated permalloy,” Mechatronics, vol. 8, pp. 613-633, 1998
    [39] Y. W. Yi and C. Liu, “Magnetic actuation of hinged microstructures,” J. Microelectromech. Syst., vol. 8, pp. 10-17, 1999
    [40] Y. W. Yi and C. Liu, “Assembly of micro-optical devices using magnetic actuation,” Sens. Actuators A, vol. 78, pp. 205-211, 1999
    [41] C. Liu, T. Tsao, G. B. Lee, J. T. S. Leu, Y. W. Yi, Y. C. Tai, and C. M. Ho, “Out-of-plane magnetic actuators with electroplated permalloy for fluid dynamics control,” Sens. Actuators A, vol. 78, pp. 190-197, 1999
    [42] Y. W. Yi and C. Liu, “Parallel magnetic actuation of hinged microstructures,” 5th International Symposium on Magnetic Materials, Processes, and Devices, vol. 98, pp. 434-445, 1999
    [43] M. Khoo and C. Liu, “A novel micromachined magnetic membrane microfluid pump,” 22nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society, vol. 1-4, pp. 2394-2397, 2000
    [44] M. Khoo and C. Liu, “Micro magnetic silicone elastomer membrane actuator,” Sens. Actuators A, vol. 89, pp. 259-266, 2001
    [45] J. Zou, J. Chen, C. Liu, and J. E. S. Aine, “Plastic deformation magnetic assembly (PDMA) of out-of-plane microstructures: technology and application,” J. Microelectromech. Syst., vol. 10, pp. 302-309, 2001
    [46] J. Zou, J. Chen, and C. Liu, “Plastic deformation magnetic assembly (PDMA) of 3D microstructures: technology development and application,” 11th International Conference on Solid-State Sensors and Actuators, vol. 1-2, pp. 1582-1585, 2001
    [47] Z. Fan, J. Chen, J. Zou, D. Bullen, C. Liu, and F. Delcomyn, “Design and fabrication of artificial lateral line flow sensors,” J. Micromech. Microeng., vol. 12, pp. 655-661, 2002
    [48] J. Chen, J. Zou, C. Liu, J. E. S. Aine, and S. M. Kang, “Design and modeling of a micromachined high-Q tunable capacitor with large tuning range and a vertical planar spiral inductor,” IEEE Trans. Electron Devices, vol. 50, pp. 730-739, 2003
    [49] J. Zou, C. Liu, D. R. Trainor, J. Chen, J. E. S. Aine, and P. L. Chapman, “Development of three-dimensional inductors using plastic deformation magnetic assembly (PDMA),” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1067-1075, 2003
    [50] C. Liu, J. Chen, J. Engel, J. Zou, X. Wang, Z. Fan, K. Ryu, K. Shaikh, and D. Bullen, “Polymer micromachining and applications in sensors, microfluidics, and nanotechnology,” 226th National Meeting of the American-Chemical-Society, vol. 226, pp. U359, 2003
    [51] Z. Huang and J. Shen, “Latching micromagnetic optical switch,” J. Microelectromech. Syst., vol. 15, pp. 16-23, 2006
    [52] L. K. Lagorce and M. G. Allen, “Micromachined polymer magnets,” IEEE 9th Annual International Workshop on Micro Electro Mechanical Systems, pp. 85-90, 1996
    [53] L. K. Lagorce and M. G. Allen, “Magnetic and mechanical properties of micromachined strontium ferrite/polyimide composites,” J. Microelectromech. Syst., vol. 4, pp. 307-312, 1997
    [54] L. K. Lagorce, O. Brand, and M. G. Allen, “Magnetic microactuators based on polymer magnets,” J. Microelectromech. Syst., vol. 8, pp. 2-9, 1999
    [55] S. O. Isikman, O. Ergeneman, A. D. Yalcinkaya, and H. Urey, “Modeling and characterization of soft magnetic film actuated 2-D scanners,” IEEE J. Sel. Top. Quantum Electron., vol. 13, pp. 283-289, 2007
    [56] S. O. Isikman and H. Urey, “Dynamic modeling of magnetic film actuators,” 20th Annual Meeting of the IEEE Lasers and Electro Optics Society, vol. 1-2, pp. 912-913, 2007
    [57] S. O. Isikman and H. Urey, “Dynamic modeling of soft magnetic film actuated scanners,” IEEE Trans. Magn., vol. 45, pp. 2912-2919, 2009
    [58] H. Chiriac, M. Pletea, E. Hristoforou, “Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications,” Sens. Actuators A, vol. 68, pp. 414-418, 1998
    [59] H. Chiriac, M. Pletea, E. Hristoforou, “Fe-based amorphous thin film as a magnetoelastic sensor material,” Sens. Actuators A, vol. 81, pp. 166-169, 2000
    [60] J. K. Luo, A. J. Flewitt, S. M. Spearing, N. A. Fleck, and W. I. Milne, “Young’s modulus of electroplated Ni thin film for MEMS applications,” Materials Letters, vol. 58, pp. 2306-2309, 2004
    [61] M. Lohndorf, J. Moreland, P. Kabos, and N. Rizzo, “Microcantilever torque magnetometry of thin magnetic films,” J. Appl. Phys., vol. 87, pp. 5995-5997, 2000
    [62] J. Moreland, P. Kabos, A. Jander, M. Lohndorf, R. M. Michael, and C. G. Lee, “Micromechanical detectors for ferromagnetic resonance spectroscopy,” Micormachined Devices and Components VI, vol. 4176, pp. 84-95, 2000
    [63] A. Jander, J. Moreland, and P. Kabos, “Micromechanical detectors for local field measurements based on ferromagnetic resonance (invited),” J. Appl. Phys., vol. 89, pp. 7086-7090, 2001
    [64] A. Jander, J. Moreland, and P. Kabos, “Angular momentum and energy transferred through ferromagnetic resonance,” Appl. Phys. Lett., vol. 78, pp. 2348-2350, 2001
    [65] J. Moreland, “Micromechanical instruments for ferromagnetic measurements,” J. Phys. D: Appl. Phys., vol. 36, pp. R39-R51, 2003
    [66] M. D. Chabot and J. Moreland, “Micrometer-scale magnetometry of thin Ni80Fe20 films using ultrasensitive microcantilevers,” J. Appl. Phys., vol. 93, pp. 7897-7899, 2003
    [67] L. Gao, D. Q. Feng, L. Yuan, T. Yokota, R. Sabirianov, S. H. Liou, M. D. Chabot, D. Porpora, and J. Moreland, “A study of magnetic interactions of Ni80Fe20 arrays using ultrasensitive microcantilever torque magnetometry,” J. Appl. Phys., vol. 95, pp. 7010-7012, 2004
    [68] D. H. Min, A. M. Callum, S. E. Russek, and J. Moreland, “Micromechanical torque magnetometer with sub-monolayer sensitivity,” J. Magn. Magn. Mater., vol. 286, pp. 329-335, 2005
    [69] D. H. Min and J. Moreland, “Quantitative measurement of magnetic moments with a torsional resonator: proposal for an ultralow moment reference material,” J. Appl. Phys., vol. 97, pp. 10R504, 2005
    [70] M. D. Chabot, J. Moreland, L. Gao, S. H. Liou, and C. W. Miller, “Novel fabrication of micromechanical oscillators with nanoscale sensitivity at room temperature,” J. Microelectromech. Syst., vol. 14, pp. 1118-1126, 2005
    [71] L. Yuan, R. Sabirianov, S. H. Liou, M. D. Chabot, D. H. Min, J. Moreland, and B. S. Han, “Microcantilever torque magnetometry study of patterned magnetic films,” IEEE Trans. Magn., vol. 42, pp. 3234-3236, 2006
    [72] S. Lee, T. M. Wallis, J. Moreland, P. Kabos, and Y. C. Lee, “Asymmetric dielectric trilayer cantilever probe for calorimetric high-frequency field imaging,” J. Microelectromech. Syst., vol. 16, pp. 78-86, 2007
    [73] D. Zech, J. Hofer, H. Keller, C. Rossel, P. Bauer, and J. Karpinski, “Effective mass anisotropy of HgBa2Ca3Cu4O10 measured on a microcrystal by means of miniaturized torque magnetometry,” Phys. Rev. B, vol. 53, pp. R6026-R6029, 1996
    [74] C. Rossel, P. Bauer, D. Zech, J. Hofer, M. Willemin, and H. Keller, “Active microlevers as miniature torque magnetometers,” J. Appl. Phys., vol. 79, pp. 8166-8173, 1996
    [75] M. Willemin, C. Rossel, J. Brugger, M. H. Despont, H. Rothuizen, P. Vettiger, J. Hofer, and H. Keller, “Piezoresistive cantilever designed for torque magnetometry,” J. Appl. Phys., vol. 83, pp. 1163-1170, 1998
    [76] C. Rossel, M. Willemin, A. Gasser, H. Bothuizen, G. I. Meijer, and H. Keller, “Torsion cantilever as magnetic torque sensor,” Rev. Sci. Instrum., vol. 69, pp. 3199-3203, 1998
    [77] J. Brugger, M. Despont, C. Rossel, H. Rothuizen, P. Vettiger, and M. Willemin, “Microfabricated ultrasensitive piezoresistive cantilevers for torque magnetometry,” Sens. Actuators A, vol. 73, pp. 235-242, 1999
    [78] J. G. E. Harris, D. D. Awschalom, F. Matsukura, H. Ohno, K. D. Maranowski, and A. C. Gossard, “Integrated micromechanical cantilever magnetometry of Ga1-xMnxAs,” Appl. Phys. Lett., vol. 75, pp. 1140-1142, 1999
    [79] J. G. E. Harris, D. D. Awschalom, K. D. Maranowski, and A. C. Gossard, “Magnetization and dissipation measurements in the quantum Hall regime using an integrated micromechanical magnetometer,” J. Appl. Phys., vol. 87, pp. 5102-5104, 2000
    [80] J. G. E. Harris, R. Knobel, K. D. Maranowski, A. C. Gossard, N. Samarth, and D. D. Awschalom, “Magnetization measurements of magnetic two-dimensional electron gases,” Phys. Rev. Lett., vol.86, pp. 4644-4647, 2001
    [81] J. G. E. Harris, R. Knobel, K. D. Maranowski, A. C. Gossard, N. Samarth, and D. D. Awschalom, “Damping of micromechanical structures by paramagnetic relaxation,” Appl. Phys. Lett., vol. 82, pp. 3532-3534, 2003
    [82] M. J. Naughton, J. P. Ulmet, A. Narjis, S. Askenazy, M. V. Chaparala, and A. P. Hope, “Cantilever magnetometry in plused magnetic fields,” Rev. Sci. Instrum., vol. 68, pp. 4061-4065, 1997
    [83] M. J. Naughton, J. P. Ulmet, A. Narjis, S. Askenazy, M. V. Chaparala, and R. Richter, “Demonstration of cantilever magnetometry in pulsed magnetic fields,” Phy. B, vol. 246-247, pp. 125-128, 1998
    [84] B. C. Stipe, H. J. Mamin, T. D. Stowe, T. W. Kenny, and D. Rugar, “Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry,” Phys. Rev. Lett., vol.86, pp. 2874-2877, 2001
    [85] B. C. Stipe, H. J. Mamin, C. S. Yannoni, T. D. Stowe, T. W. Kenny, and D. Rugar, “Electron spin relaxation near a micro-size ferromagnet,” Phys. Rev. Lett., vol.87, pp. 277602, 2001
    [86] D. Rugar, B. C. Stipe, H. J. Mamin, C. S. Yannoni, K. Y. Yasumura, and T. W. Kenny, “Adventures in attonewton force deflection,” Appl. Phys. A, vol. 72, pp. S3-S10, 2001
    [87] E. Ohmichi and T. Osada, “Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever,” Rev. Sci. Instrum., vol. 73, pp. 3022-3026, 2002
    [88] J. P. Davis, D. Vick, D. C. Fortin, J. A. J. Burgess, W. K. Hiebert, and M. R. Freeman, “Nanotorsional resonator torque magnetometry,” Appl. Phys. Lett., vol. 96, pp. 072513, 2010
    [89] J. P. Davis, D. Vick, J. A. J. Burgess, D. C. Fortin, P. Li, V. Sauer, W. K. Hiebert, and M. R. Freeman, “Observation of magnetic supercooling of the transition to the vortex state,” New J. Phys., vol. 12, pp. 093033, 2010
    [90] B. B. Yellen and G. Friedman, “Analysis of repulsive interactions in chains of superparamagnetic colloidal particles for magnetic template-based self-assembly,” J. Appl. Phys., vol. 93, pp. 8447-8449, 2003
    [91] O. Hovorka, B. B. Yellen, and G. Friedman, “Modeling stability of trapped ferromagnetic nanoparticle chains,” IEEE Trans. Magn., vol. 39, pp. 2549-2551, 2003
    [92] B. B. Yellen and G. Friedman, “Magnetically driven assembly of colloidal particles onto patterned surfaces,” Nanotechnology Conference and Trade Show, vol.3, pp. 542-545, 2003
    [93] B. B. Yellen and G. Friedman, “Programmable assembly of colloidal particles using magnetic microwell templates,” Langmuir, vol. 20, pp. 2553-2559, 2004
    [94] B. B. Yellen, O. Hovorka, and G. Friedman, “Arranging matter by magnetic nanoparticle assemblers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 8860-8864, 2005
    [95] B. B. Yellen, R. M. Erb, D. S. Halverson, O. Hovorka, and G. Friedman, “Arraying nonmagnetic colloids by magnetic nanoparticle assemblers,” IEEE Trans. Magn., vol. 42, pp. 3548-3553, 2006
    [96] M. Tanase, E. J. Felton, D. S. Gray, A. Hultgren, C. S. Chen, and D. H. Reich, “Assembly of multicellular constructs and microarrays of cells using magnetic nanowires,” Lab on a Chip, vol. 5, pp. 598-605, 2005
    [97] K. Gunnarsson, P. E. Roy, S. Felton, J. Pihl, P. Svedlindh, S. Berner, H. Lidbaum, and S. Oscarsson, “Programmable motion and separation of single magnetic particles on patterned magnetic surfaces,” Adv. Mater., vol. 17, pp. 1730-1734, 2005
    [98] P. Warnicke, “Magnetization of thin-film permalloy ellipses used for programmable motion of magnetic particles,” Conference of the World-Academy-of-Science-Engineering-and-Technology, vol. 11, pp. 243-245, 2006
    [99] P. Warnicke, S. Felton, K. Gunnarsson, and P. Svedlindh, “Simulations of magnetic microstructure in thin film elements used for programmable motion of magnetic particles,” J. Magn. Magn. Mater., vol. 303, pp. e294-e298, 2006
    [100]R. S. Conroy, G. Zabow, J. Moerland, and A. P. Koretsky, “Controlled transport of magnetic particles using soft magnetic patterns,” Appl. Phys. Lett., vol. 93, pp. 203901, 2008
    [101]P. Vavassori, M. Gobbi, M. Donolato, V. Metlushko, B. Ilic, M. Cantoni, D. Petti, S. Brivio, and R. Bertacco, “Manipulation at the nano-scale of single magnetic particles via domain walls conduits,” International Conference on Electromagnetics in Advanced Applications, vol. 1-2, pp. 837-840, 2009
    [102]P. Vavassori, M. Gobbi, M. Donolato, M. Cantoni, R. Bertacco, V. Metlushko, and B. Ilic, “Magnetic nanostructures for the manipulation of individual nanoscale particles in liquid environments (invited),” J. Appl. Phys., vol. 107, pp. 09B301, 2010
    [103]C. S. Lee, H. Lee, and R. M. Westervelt, “Microelectromagnets for the control of magnetic nonoparticles,” Appl. Phys. Lett., vol. 79, pp. 3308-3310, 2001
    [104]H. Lee, A. M. Purdon, V. Chu, and R. M. Westervelt, “Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays,” Nano Lett., vol. 4, pp. 995-998, 2004
    [105]H. Lee, A. M. Purdon, and R. M. Westervelt, “Micromanipulation of biological systems with microelectronmagnets,” IEEE Trans. Magn., vol. 40, pp. 2991-2993, 2004
    [106]H. Lee, A. M. Purdon, and R. M. Westervelt, “Manipulation of biological cells using a microelectromagnet matrix,” Appl. Phys. Lett., vol. 85, pp. 1063-1065, 2004
    [107]T. P. Hunt, H. Lee, and R. M. Westervelt, “Addressable micropost array for the dielectrophoretic manipulation of particles in fluid,” Appl. Phys. Lett., vol. 85, pp. 6421-6423, 2004
    [108]H. Lee, T. P. Hunt, and R. M. Westervelt, “Magnetic and Electric manipulation of a single cell in fluid,” Mat. Res. Soc. Symp. Proc., vol. 820, pp. 17-24, 2004
    [109]Y. Liu, H. Lee, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid system for biology: review,” BIPOLAR/BiCMOS Circuits and Technology Meeting, pp. 174-179, 2005
    [110]H. Lee, Y. Liu, R. M. Westervelt, and D. Ham, “IC/microfluidic hybrid system for magnetic manipulation of biological cells,” IEEE J. Solid-State Circuits, vol. 41, pp. 1471-1480, 2006
    [111]H. Lee, Y. Liu, D. Ham, and R. M. Westervelt, “Integrated cell manipulation system-CMOS/microfluidic hybrid,” Lab on a Chip, vol. 7, pp. 331-337, 2007
    [112]A. Rida, V. Fernandez, and M. A. M. Gijs, “Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field,” Appl. Phys. Lett., vol. 83, pp. 2396-2398, 2003
    [113]U. Lehmann, S. Hadjidj, V. K. Parashar, A. Rida, and M. A. M. Gijs, “Two dimensional magnetic manipulation of microdroplets on a chip,” 13th International Conference on Solid-State Sensors, Actuators and Microsystems, vol. 1-2, pp. 77-80, 2005
    [114]U. Lehmann, S. Hadjidj, V. K. Parashar, C. Vandevyver, A. Rida, and M. A. M. Gijs, “Two-dimensional magnetic manipulation of microdroplets on a chip as a platform for bioanalytical applications,” Sens. Actuators B, vol. 117, pp. 457-463, 2006
    [115]D. Keum, P. Lee, J. Kim, and K. Hong, “Manipulation of magnetic beads by magnetic fields of narrow metallic wires for use in biosensors,” IEEE Trans. Magn., vol. 45, pp. 2875-2877, 2009
    [116]Q. Ramadan, C. Yu, V. Samper, and D. P. Poenar, “Microcoils for transport of magnetic beads,” Appl. Phys. Lett., vol. 88, pp. 032501, 2006
    [117]Q. Ramadan, V. Samper, D. P. Poenar, and C. Yu, “An integrated microfluidic platform for magnetic microbeads separation and confinement,” Biosens. Bioelectron., vol. 21, pp. 1693-1702, 2006
    [118]Q. Ramadan, V. D. Samper, D. P. Puiu, and C. Yu, “Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration,” J. Microelectromech. Syst., vol. 15, pp. 624-638, 2006
    [119]Q. Ramadan, V. Samper, D. Poenar, and C. Yu, “Magnetic-based microfluidic platform for biomolecular separation,” Biomed. Microdevices, vol. 8, pp. 151-158, 2006
    [120]Q. Ramadan, D. P. Poenar, and C. Yu, “Customized trapping of magnetic particles,” Microfluid and Nanofluid, vol. 6, pp. 53-62, 2009
    [121]張煦和李學養, “磁性物理學,” 聯經出版事業公司, 1982
    [122]鄭振東, “實用磁性材料,” 全華科技圖書股份有限公司, 1999
    [123]嚴密和彭曉領, “磁學基礎與磁性材料,” 浙江大學出版社, 2006
    [124]F. Borsa and V. Tognetti, “Magnetic properties of matter,” World Scientific, 1986
    [125]B. Barbara, D. Gignoux, and C. Vettier, “Lectures of modern magnetism,” Science Press Beiling, 1988
    [126]J. M. D. Coey, “Magnetism and magnetic materials,” Cambridge University press, 2010
    [127]E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heterogeneous alloys,” Phil. Trans. Roy. Soc., vol. 240, pp. 599-642, 1948

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE