研究生: |
王政鈞 Cheng-Jun Wang |
---|---|
論文名稱: |
Inelastic Electron Tunneling Spectroscopy Study of MOS Diodes with High-κ Gate Dielectrics on GaAs 在砷化鎵之高介電常數閘極介電層電容元件之非彈性電子穿隧能譜研究 |
指導教授: |
連振炘
Chen-Hsin Lien 郭瑞年 Ray-Nien Kwo 洪銘輝 Ming-Hwei Hong |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 非彈性電子穿隧能譜 、砷化鎵 、高介電常數閘極介電層 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
非彈性量子穿隧光譜 (Inelastic electron tunneling spectroscopy) 是一種極敏感的量測系統,可用來量測聲子、化學鍵結的振動能譜,以及介電層中的缺陷,近年來由於氧化層(high-κ)的厚度降於5nm 以下,IETS 量測技術已被廣泛的用來研究金氧半元件(MOS device),本實驗利用此技術來量測高介電常數閘極氧化物:氧化鉿以及氧化鉿摻雜氧化釔成長在矽以及砷化鎵上的聲子能量和化學鍵結的振動能譜,以砷化鎵為基板的IETS 光譜中,我們發現了因為氧摻雜於砷化鎵中所造成的缺陷的振動能量,關於此部分,可以在設計一系列由分子束磊晶(MBE)成長的氧化鉿以及原子層沉積(ALD)成長的氧化鉿長在砷化鎵的基板上,由於MBE 的成長方式中不含氧,而ALD 的成長方式有氧化劑的存在,因此,若我們可於ALD 成長氧化鉿於砷化鎵上發現氧缺陷於砷化鎵中的振動能量,而在MBE成長氧化鉿於砷化鎵上沒有發現此振動能量,那將可以更進一步的確認氧缺陷在砷化鎵上的真實性,這將是我們未來的工作。
1. See the International Technology Roadmap for Semiconductors (Metrology Roadmap) at http://public.itrs.net.
2. Sorsch, D., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. & Timp, G. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758-761 (1999).
3. Depas, M., Vermeire, B., Mertens, P.W., Van Meirhaeghe, R.L. & Heyns, M.M. Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures. Solid State Electronics 38, 1465-1471 (1995).
4. Lo, S.H. et al. Quantum-mechanical modeling of electron tunneling current from theinversion layer of ultra-thin-oxide nMOSFET's. Electron Device Letters, IEEE 18, 209-211 (1997).
5. Wilk, G.D., Wallace, R.M. & Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics 89, 5243 (2001).
6. Jaklevic, R.C. & Lambe, J. Molecular Vibration Spectra by Electron Tunneling. Physical Review Letters 17, 1139 (1966).
7. Esaki, L. New Phenomenon in Narrow Germanium p-n Junctions. Physical Review 109, 603 (1958).
8. Holonyak, N., Lesk, I.A., Hall, R.N., Tiemann, J.J. & Ehrenreich, H. Direct Observation of Phonons During Tunneling in Narrow Junction Diodes. Physical Review Letters 3, 167 (1959).
9. Brockhouse, B.N. Lattice Vibrations in Silicon and Germanium. Physical Review Letters 2, 256-258 (1959).
10. Haynes, J.R. private communication; see also HAYNES JR, LAX M. and FLOOD WF. Phys. Chem. Solids 8, 392 (1959).
11. Macfarlane, G.G., McLean, T.P., Quarrington, J.E. & Roberts, V. Exciton and phonon effects in the absorption spectra of germanium and silicon. J. Phys. Chem. Solids 8, 388–392 (1959).
12. Lye, W.K. Ph. D. thesis, Yale University, 1998
13. Lye, W.K. et al. Quantitative inelastic tunneling spectroscopy in the silicon metal-oxide-semiconductor system. Applied Physics Letters 71, 2523 (1997).
14. Balk, P., Ewert, S., Schmitz, S. & Steffen, A. Tunneling spectroscopy on metal-insulator-silicon structures with very thin insulating layers. Journal of Applied Physics 69, 6510 (1991).
15. He, W. & Ma, T.P. Inelastic electron tunneling spectroscopy study of traps in ultrathin high-k gate dielectrics. Applied Physics Letters 83, 5461 (2003).
16. Wang, M., He, W. & Ma, T.P. Electron tunneling spectroscopy study of traps in high-k gate dielectrics: Determination of physical locations and energy levels of traps. Applied Physics Letters 86, 192113 (2005).
17. Sze, S.M. Physics of Semiconductor Device., (New York: John Wiley and Sons, 1981).
18. Yang, Z.K. et al. Cubic HfO2 doped with Y2O3 epitaxial films on GaAs (001) of enhanced dielectric constant. Applied Physics Letters 90, 152908 (2007).
19. Horiuchi, T., Ebisawa, F. & Tabei, H. New inelastic electron tunneling spectrometer with an absolute peak intensity. Review of Scientific Instruments 60, 993 (1989).
20. Adler, J.G., Chen, T.T. & Straus, J. High Resolution Electron Tunneling Spectroscopy. Review of Scientific Instruments 42, 362 (2003).
21. Adler, J.G. & Straus, J. Application of minicomputers in high resolution electron tunneling. Review of Scientific Instruments 46, 158 (1975).
22. Hipps, K.W. & Mazur, U. Constant-resolution tunneling spectroscopy. Review of Scientific Instruments 59, 1903 (1988).
23. Wang, Y., Mallik, R.R. & Henriksen, P.N. Easily realized inelastic electron tunneling spectrometer. Review of Scientific Instruments 64, 890 (1993).
24. Haynes, J.R., Lax, M. & Flood, W.F. Phys. Chem. Solids 8, 392 (1959).
25. Esaki, L. & Miyahara, Y. Solid State Electronics 1, 13 (1960).
26. Chynoweth, A.G., Logan, R.A. & Thomas, D.E. Phonon-Assisted Tunneling in Silicon and Germanium Esaki Junctions. Physical Review 125, 877 (1962).
27. Huang, C.C. Inelastic Electron Tunneling Spectroscopy study on MBE-grown HfO2 Metal-Oxide-Semiconductor System, M.S. thesis, Phys. Dept., National Tsing Hua Univ., Hsinchu, Taiwan. (2006).
28. You, S.L. Inelastic Electron Tunneling Spectroscopy Study of Metal-Oxide-Semiconductor Device with High-k Gate Dielectrics, M.S. thesis, Phys. Dept., National Tsing Hua Univ., Hsinchu, Taiwan. (2007).
29. Wooten, F., Winer, K. & Weaire, D. Computer Generation of Structural Models of Amorphous Si and Ge. Physical Review Letters 54, 1392-1395 (1985).
30. Bakaev, V.A. Continuous random network at the silica surface. Physical Review B 60, 10723-10726 (1999).
31. Barkema, G.T. & Mousseau, N. High-quality continuous random networks. Physical Review B 62, 4985-4990 (2000).
32. Tu, Y., Tersoff, J., Grinstein, G. & Vanderbilt, D. Properties of a Continuous-Random-Network Model for Amorphous Systems. Physical Review Letters 81, 4899-4902 (1998).
33. Galeener, F.L. & Lucovsky, G. Longitudinal Optical Vibrations in Glasses: GeO2 and SiO2. Physical Review Letters 37, 1474 (1976).
34. Galeener, F.L., Leadbetter, A.J. & Stringfellow, M.W. Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO2, GeO2, and BeF2. Physical Review B 27, 1052-1078 (1983).
35. Martinez, J.R., Ruiz, F., Vorobiev, Y.V., Perez-Robles, F. & Gonzalez-Hernandez, J. Infrared spectroscopy analysis of the local atomic structure in silica prepared by sol-gel. The Journal of Chemical Physics 109, 7511 (1998).
36. Brunet-Bruneau, A., Rivory, J., Rafin, B., Robic, J.Y. & Chaton, P. Infrared ellipsometry study of evaporated SiO2 films: Matrix densification, porosity, water sorption. Journal of Applied Physics 82, 1330 (1997).
37. Montero, I., Galan, L., Najmi, O. & Albella, J.M. Disorder-induced vibration-mode coupling in SiO2 films observed under normal-incidence infrared radiation. Physical Review B 50, 4881 (1994).
38. Kirk, C.T. Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Physical Review B 38, 1255 (1988).
39. Gunde, M.K. Vibrational modes in amorphous silicon dioxide. Physica B: Physics of Condensed Matter 292, 286-295 (2000).
40. Petit, C. & Salace, G. Inelastic electron tunneling spectrometer to characterize metal–oxide–semiconductor devices with ultrathin oxides. Review of Scientific Instruments 74, 4462 (2003).
41. Petit, C., Salace, G. & Vuillaume, D. Aluminum, oxide, and silicon phonons by inelastic electron tunneling spectroscopy on metal-oxide-semiconductor tunnel junctions: Accurate determination and effect of electrical stress. Journal of Applied Physics 96, 5042 (2004).
42. Klein, J. Ph.D. Thesis, University of Paris. (1969).
43. Klein, J. & Leger, A. Phys. Lett. 28A, 134 (1968).
44. Carbotte, J.P. & Dynes, R.C. Phys. Lett. 25A, 685 (1967).
45. Walmsley, D.G. Vibrational Spectroscopy of Adsorbates, edited by R. F. Willis, Springer, Berlin. p67 (1980).
46. Gauthier, S., de Cheveign, S., Klein, J. & Belin, M. Evidence for the formation of Al-H bonds in tunneling junctions. Physical Review B 29, 1748 (1984).
47. He, W. & Ma, T.P. Inelastic electron tunneling spectroscopy study of ultrathin HfO2 and HfAlO. Applied Physics Letters 83, 2605 (2003).
48. Zhao, X. & Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Physical Review B 65, 233106 (2002).
49. Fujimori, H. et al. Internal distortion in ceria-doped hafnia solid solutions: High-resolution x-ray diffraction and Raman scattering. Physical Review B 64, 134104 (2001).
50. Ceperley, D.M. & Alder, B.J. Phys. Rev. Lett. 45, 566 (1980).
51. Perdew, J.P., Burke, K. & Ernzerhof, M. Phys. Rev. Lett. 77, 3865 (1996).
52. Zhang, Y. & Yang, W. ibid. 80, 890 (1998).
53. Jayaraman, A., Wang, S.Y., Sharma, S.K. & Ming, L.C. Pressure-induced phase transformations in HfO2 to 50 GPa studied by Raman spectroscopy. Physical Review B 48, 9205 (1993).
54. Kim, B.K. & Hamaguchi, H. Raman spectrum of 18O-labelled Hafnia. Materials Research Bulletin 32, 1367-1370 (1997).
55. Carlone, C. Raman spectrum of zirconia-hafnia mixed crystals. Physical Review B 45, 2079 (1992).
56. Quintard, P.E., Barbe′ris, P., Mirgorodsky, A.P. & Merle-Me′jean, T.r.s. Comparative Lattice-Dynamical Study of the Raman Spectra of Monoclinic and Tetragonal Phases of Zirconia and Hafnia. J. Am. Ceram. Soc 85 [7], 1745-1749 (2002).
57. Krebs, M.A., Snyder, R.L. & Condrate, R.A. THE RAMAN SPECTRA AND X-RAY POWDER DIFFRACTION DATA OF STABILIZED HAFNIA PHASES. 18, 1089-1093 (1983).
58. Cosnier, V., Olivier, M., Theret, G. & Andre, B. HfO–SiO interface in PVD coatings. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19, 2267 (2001).
59. Neumayer, D.A. & Cartier, E. Materials characterization of ZrO–SiO and HfO–SiO binary oxides deposited by chemical solution deposition. Journal of Applied Physics 90, 1801 (2001).
60. Srnanek, R. et al. Study of δ-doped GaAs layers by micro-Raman spectroscopy on bevelled samples. Applied Surface Science 230, 379-385 (2004).
61. Srnanek, R., Gurnik, P., Harmatha, L. & Gregora, I. Diagnostics of Si multi-δ-doped GaAs layers by Raman spectroscopy on bevelled structures. Applied Surface Science 183, 86-92 (2001).
62. Srnanek, R. et al. Determination of doping profiles on bevelled GaAs structures by Raman spectroscopy. Applied Surface Science 177, 139-145 (2001).
63. Berg, R.S., Yu, P.Y. & Weber, E.R. Raman spectroscopy of intrinsic defects in electron and neutron irradiated GaAs. Applied Physics Letters 47, 515 (1985).
64. Berg, R.S. & Yu, P.Y. Resonant Raman study of intrinsic defect modes in electron-and neutron-irradiated GaAs. Physical Review B 35, 2205-2221 (1987).
65. Schneider, J. et al. Assessment of oxygen in gallium arsenide by infrared local vibrational mode spectroscopy. Applied Physics Letters 54, 1442 (1989).
66. Pesola, M., Boehm, J.v., Sammalkorpi, V., Mattila, T. & Nieminen, R.M. Microscopic structure of oxygen defects in gallium arsenide. Physical Review B 60, R16267 (1999).
67. Taguchi, A. & Kageshima, H. First-principles investigation of the oxygen negative-U center in GaAs. Physical Review B 57, R6779 (1998).
68. Stacy, D.W. & Wilder, D.R. The Yttria-Hafnia System. The American Ceramic Society-Stacy and Wilder 58, 285 (1975).
69. Dai, J.Y., Lee, P.F., Wong, K.H., Chan, H.L.W. & Choy, C.L. Epitaxial growth of yttrium-stabilized HfO high-k gate dielectric thin films on Si. Journal of Applied Physics 94, 912 (2003).
70. Rauwel, E. et al. Stabilization of the cubic phase of HfO2 by Y addition in films grown by metal organic chemical vapor deposition. Applied Physics Letters 89, 012902 (2006).
71. Kita, K., Kyuno, K. & Toriumi, A. Permittivity increase of yttrium-doped HfO through structural phase transformation. Applied Physics Letters 86, 102906 (2005).
72. Fujimori, H. et al. Cubic-tetragonal phase change of yttria-doped hafnia solid solution: high-resolution X-ray diffraction and Raman scattering. Chemical Physics Letters 346, 217-223 (2001).
73. Yashima, M. et al. Formation of metastable forms by quenching of the HfO2-RO1.5 melts (R= Gd, Y and Yb). Journal of Physics and Chemistry of Solids 57, 289-295 (1996).
74. Anastassakis, E., Papanicolaou, B. & Asher, I.M. Lattice dynamics and light scattering in hafnia and zirconia. Journal: J. Phys. Chem. Solids, v. 36, no. 7/8, pp. 667-676; Other Information: Orig. Receipt Date: 31-DEC-75 (1975).
75. Krebs, M.A. & Condrate, R.A. Vibrational Spectra of HfO2-ZrO2 Solid Solutions. Journal of the American Ceramic Society 65, 144-145 (1982).
76. Kourouklis, G.A. & Liarokapis, E. Pressure and Temperature Dependence of the Raman Spectra of Zirconia and Hafnia. Journal of the American Ceramic Society 74, 520-523 (1991).
77. Arashi, H. Pressure-Induced Phase Transformation of HfO2. Journal of the American Ceramic Society 75, 844-847 (1992).
78. Voron'Ko, Y.K., Sobol, A.A. & Tsymbal, L.I. Cubic-to-tetragonal phase transitions in ZrO2-Ln2O3 and HfO2-Ln2O3 solid solutions. Inorganic materials 34, 350-356 (1998).