簡易檢索 / 詳目顯示

研究生: 林柏翰
Lin, Bo-Han
論文名稱: 邊界共形場論之全像熵不等式
Holographic Entropy Inequalities in Boundary Conformal Field Theory
指導教授: 朱創新
Chu, Chong-Sun
楊毅
Yang, Yi
口試委員: 溫文鈺
Wen, Wen-Yu
林豐利
Lin, Feng-Li
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 57
中文關鍵詞: 反德西特/共形場論對偶全像糾纏熵全像邊界共行場論全像熵不等式
外文關鍵詞: AdS/CFT correspondence, Holographic entanglement entropy, Holographic BCFT, Holographic entropy inequalities
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用反德西特/共形場論對偶分析邊界共形場論中的全像熵不等式。藉由全像熵在不同溫度的相圖,我們得以分類所有可能出現的組態,並進一步驗證在零溫及有限溫度時,全像熵不等式皆成立。


    In this thesis, we study entropy inequalities in boundary conformal field theory by the AdS/CFT correspondence. By carefully classifying all the confi gurations for different phases, we verify the strong subadditivity and the monogamy of mutual information in the holographic dual of boundary conformal field theory at both zero and finite temperatures.

    1 Introduction 1 2 Holographic Principle 2 2.1 Finite Temperature Field Theory . . . . . . . . . . . . . . . . . . . 2 2.2 Black Hole Temperature and Entropy . . . . . . . . . . . . . . . . . 3 2.3 AdS/CFT Correspondence . . . . . . . . . . . . . . . . . . . . . . . 4 3 Holographic Entanglement Entropy 6 3.1 Entanglement in Various Systems . . . . . . . . . . . . . . . . . . . 6 3.1.1 Entanglement in Bipartite Systems . . . . . . . . . . . . . . 6 3.1.2 Entanglement in Lattice Systems . . . . . . . . . . . . . . . 7 3.1.3 Entanglement in Quantum Field Theory . . . . . . . . . . . 8 3.2 Properties of Entanglement Entropy . . . . . . . . . . . . . . . . . . 8 3.2.1 UV Divergence of Entanglement Entropy . . . . . . . . . . . 8 3.2.2 Entropy Inequalities . . . . . . . . . . . . . . . . . . . . . . 9 3.3 The Ryu-Takayanagi Formula . . . . . . . . . . . . . . . . . . . . . 9 3.4 Properties of Holographic Entanglement Entropy . . . . . . . . . . 10 3.4.1 UV Divergence of Holographic Entanglement Entropy . . . . 10 3.4.2 Holographic Entropy Inequalities . . . . . . . . . . . . . . . 11 4 Holographic Entropy Inequalities in BCFT 15 4.1 Holographic BCFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Holographic Entanglement Entropy . . . . . . . . . . . . . . . . . . 17 4.2.1 Pure AdS Spacetime . . . . . . . . . . . . . . . . . . . . . . 18 4.2.2 Schwarzschild-AdS Black Hole Background . . . . . . . . . . 20 4.3 Multipartite Systems in the Holographic BCFT . . . . . . . . . . . 22 4.3.1 Notations for Multipartite Systems . . . . . . . . . . . . . . 24 4.3.2 Rules for the Phase Diagram . . . . . . . . . . . . . . . . . . 25 4.3.3 Subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4 Strong Subadditivity . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.4.1 Pure AdS spacetime . . . . . . . . . . . . . . . . . . . . . . 28 4.4.2 Schwarzschild-AdS Black Hole Background . . . . . . . . . . 32 4.5 Monogamy of Mutual Information . . . . . . . . . . . . . . . . . . . 32 4.5.1 Pure AdS spacetime . . . . . . . . . . . . . . . . . . . . . . 33 4.5.2 Schwarzschild-AdS Black Hole Background . . . . . . . . . . 37 5 Summary and Outlook 39 Appendices 40 A AdS Spacetime 40 A.1 Pure AdS Spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 40 A.2 Schwarzschild-AdS Black Hole Background . . . . . . . . . . . . . . 41 B Entanglement Entropy in CFT2 43 B.1 Vacuum State of CFT2 on R1;1 . . . . . . . . . . . . . . . . . . . . 43 B.2 Vacuum State of CFTd+1 on Rd,1 . . . . . . . . . . . . . . . . . . . 45 B.3 Thermal State of CFTd+1 on Rd,1 . . . . . . . . . . . . . . . . . . . 47 B.4 Vacuum State of CFT2 on S1 R . . . . . . . . . . . . . . . . . . . 50 B.5 Thermal State of CFT2 on S1 R . . . . . . . . . . . . . . . . . . 51

    [1] H. Araki and E. H. Lieb. Entropy inequalities. Commun. Math. Phys., 18:160-170, 1970.
    [2] Elliott H. Lieb and Mary Beth Ruskai. Proof of the strong subadditivity of quantum-mechanical entropy. Journal of Mathematical Physics, 14(12):1938-1941, 1973.
    [3] Shinsei Ryu and Tadashi Takayanagi. Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett., 96:181602, 2006.
    [4] Shinsei Ryu and Tadashi Takayanagi. Aspects of Holographic Entanglement Entropy. JHEP, 08:045, 2006.
    [5] Dmitri V. Fursaev. Proof of the holographic formula for entanglement entropy. JHEP, 09:018, 2006.
    [6] Veronika E. Hubeny, Mukund Rangamani, and Tadashi Takayanagi. A Covariant holographic entanglement entropy proposal. JHEP, 07:062, 2007.
    [7] Matthew Headrick. Entanglement Renyi entropies in holographic theories. Phys. Rev., D82:126010, 2010.
    [8] Horacio Casini, Marina Huerta, and Robert C. Myers. Towards a derivation of holographic entanglement entropy. JHEP, 05:036, 2011.
    [9] Aitor Lewkowycz and Juan Maldacena. Generalized gravitational entropy. JHEP, 08:090, 2013.
    [10] Mukund Rangamani and Tadashi Takayanagi. Holographic Entanglement Entropy. Lect. Notes Phys., 931:pp.1-246, 2017.
    [11] Matthew Headrick and Tadashi Takayanagi. A Holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev., D76:106013, 2007.
    [12] Aron C Wall. Maximin surfaces, and the strong subadditivity of the covariant holographic entanglement entropy. Classical and Quantum Gravity, 31(22):225007, Nov 2014.
    [13] Patrick Hayden, Matthew Headrick, and Alexander Maloney. Holographic mutual information is monogamous. Physical Review D, 87(4), Feb 2013.
    [14] Ning Bao, Sepehr Nezami, Hirosi Ooguri, Bogdan Stoica, James Sully, and Michael Walter. The holographic entropy cone. Journal of High Energy Physics, 2015(9), Sep 2015.
    [15] Michael Walter, David Gross, and Jens Eisert. Multi-partite entanglement, 2017.
    [16] Veronika E. Hubeny, Mukund Rangamani, and Massimiliano Rota. Holographic entropy relations. Fortschritte der Physik, 66(11-12):1800067, Sep 2018.
    [17] D.M. McAvity and H. Osborn. Conformal fi eld theories near a boundary in general dimensions. Nuclear Physics B, 455(3):522-576, Sep 1995.
    [18] John Cardy. Boundary conformal eld theory. hep-th/0411189, 2004.
    [19] Tadashi Takayanagi. Holographic Dual of BCFT. Phys. Rev. Lett., 107:101602, 2011.
    [20] Masahiro Nozaki, Tadashi Takayanagi, and Tomonori Ugajin. Central Charges for BCFTs and Holography. JHEP, 06:066, 2012.
    [21] Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys., 38:1113-1133, 1999. [Adv. Theor. Math. Phys.2,231(1998)].
    [22] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory correlators from noncritical string theory. Phys. Lett., B428:105-114, 1998.
    [23] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys., 2:253-291, 1998.
    [24] Gerard 't Hooft. Dimensional reduction in quantum gravity. Conf. Proc. C, 930308:284-296, 1993.
    [25] Leonard Susskind. The world as a hologram. Journal of Mathematical Physics, 36(11):6377-6396, Nov 1995.
    [26] Raphael Bousso. The holographic principle. Reviews of Modern Physics, 74(3):825-874, Aug 2002.
    [27] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333-2346, 1973.
    [28] Stephen W Hawking. Particle creation by black holes. Communications in mathematical physics, 43(3):199-220, 1975.
    [29] Jan Zaanen, Ya-Wen Sun, Yan Liu, and Koenraad Schalm. Holographic Duality in Condensed Matter Physics. Cambridge Univ. Press, 2015.
    [30] Julian S. Schwinger. Brownian motion of a quantum oscillator. J. Math. Phys., 2:407-432, 1961.
    [31] L. V. Keldysh. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz., 47:1515-1527, 1964.
    [32] Mukund Rangamani and Tadashi Takayanagi. Holographic Entanglement Entropy, volume 931. Springer, 2017.
    [33] Christoph Holzhey, Finn Larsen, and Frank Wilczek. Geometric and renormalized entropy in conformal eld theory. Nuclear Physics B, 424(3):443-467, Aug 1994.
    [34] Charles Fefferman and C. Robin Graham. Conformal invariants. In Elie Cartan et les mathematiques d'aujourd'hui - Lyon, 25-29 juin 1984, number S131 in Asterisque. Societe mathematique de France, 1985.
    [35] Dong Yang. A simple proof of monogamy of entanglement. Physics Letters A, 360(2):249-250, Dec 2006.
    [36] Alexei Kitaev and John Preskill. Topological entanglement entropy. Physical Review Letters, 96(11), Mar 2006.
    [37] Mukund Rangamani and Massimiliano Rota. Entanglement structures in qubit systems. Journal of Physics A: Mathematical and Theoretical, 48(38):385301, Aug 2015.
    [38] Temple He, Matthew Headrick, and Veronika E. Hubeny. Holographic entropy relations repackaged. Journal of High Energy Physics, 2019(10), Oct 2019.
    [39] Chong-Sun Chu, Rong-Xin Miao, and Wu-Zhong Guo. On New Proposal for Holographic BCFT. JHEP, 04:089, 2017.
    [40] En-Jui Chang, Chia-Jui Chou, and Yi Yang. Holographic entanglement entropy in boundary conformal fi eld theory. Physical Review D, 98(10), Nov 2018.
    [41] G. Hayward. Gravitational action for space-times with nonsmooth boundaries. Phys. Rev. D, 47:3275-3280, 1993.
    [42] Rong-Xin Miao, Chong-Sun Chu, and Wu-Zhong Guo. New proposal for a holographic boundary conformal fi eld theory. Phys. Rev., D96(4):046005, 2017.
    [43] Chia-Jui Chou, Bo-Han Lin, Bin Wang, and Yi Yang. Entanglement entropy inequalities in bcft by holography. Journal of High Energy Physics, 2021(2), Feb 2021.
    [44] Tatsuma Nishioka, Shinsei Ryu, and Tadashi Takayanagi. Holographic entanglement entropy: an overview. Journal of Physics A: Mathematical and Theoretical, 42(50):504008, Dec 2009.
    [45] J. David Brown and M. Henneaux. Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity. Commun. Math. Phys., 104:207-226, 1986.
    [46] Pasquale Calabrese and John Cardy. Entanglement entropy and quantum field theory. Journal of Statistical Mechanics: Theory and Experiment, 2004(06):P06002, Jun 2004.
    [47] Maximo Banados, Claudio Teitelboim, and Jorge Zanelli. Black hole in three-dimensional spacetime. Physical Review Letters, 69(13):1849-1851, Sep 1992.

    QR CODE