研究生: |
葛順康 Koh, Shung-Kang |
---|---|
論文名稱: |
量子元件非平衡狀態下的相位相干性研究 The Study of Phase Coherence in Disequilibrium State of Quantum Device |
指導教授: |
陳正中
Chen, Jeng-Chung |
口試委員: |
蕭子綱
Hsiao, Tzu-Kan 牟中瑜 Mou, Chung-Yu 林晏詳 Lin, Yen-Hsiang 林大欽 Ling, Dah-Chin 吳憲昌 Wu, Cen-Shawn |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 阿哈諾夫-玻姆效應 、表面聲波 、量子開放系統&去相干 、量子環 、超導元件 、安德烈夫反射 、约瑟夫森结 |
外文關鍵詞: | Aharonov-Bohm effect, Surface acoustic wave, Open quantum systems & decoherence, Quantum rings, Superconducting devices, Andreev reflection, Josephson junctions |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本報告試圖探討操作量子元件,其中一個非常核心的問題。如果驅使量子態 進入一個非平衡態,那其是否還能保有原本的相干性? 二十世紀,人類進入了 量子的紀元。如今二十一世紀,科學家們已經成功利用微波、磁場、粒子數或 庫倫作用力...等,來操控量子態。每一次的操控,都會驅使量子態進入短暫非平 衡的狀態,也被稱為”去平衡態”,進而對量子態的相位都會產生額外的相位。 意味著操作量子元件這動作的本身,會造成量子態的去相干性。為了研究這現 象,我們選擇了費米子和玻色子兩種系統的量子元件。本報告分成兩個部分, 第一部分會介紹費米子系統的實驗,第二部分為玻色子系統的實驗。
第一部分的費米子量子元件,我們採納阿哈羅諾夫-博姆(Aharonov-Bohm, AB)環作為量子干涉儀,建立在二維電子氣系統裡。報告了在高頻電磁場和表 面聲波(Surface acoustic wave, SAW)存在的情況下,彈道傳輸下,電子量子干 涉儀的去相干過程的研究。該元件由夾在一對指叉電極(Interdigital transducer, IDT)之間的AB環組成,其AB環作為相位感測器,IDTs作為可控制環境雜訊源。我們透過指叉電極產生的表面聲波作用於環,並從AB振盪中提取了去相干 速率。我們研究了由熱電磁場、SAW聲電流引起的去相干過程的相互作用。透 過應用射頻功率,我們得到了一個去相干的頻譜,從中觀察到了在沒有熱加熱 的情況下高頻電磁場引發的相位衰減,並確定了SAW操作無退相干的條件。去 相干的機制歸因於在電磁場和SAW存在的情況下電荷-電荷相互作用的增強。我 們的研究對於利用SAW效應開發飛行量子位元技術具有重要意義。
第二部分的玻色子系統,我們使用聚焦離子束製程,製作超導約瑟夫森 約束結(constriction junction, ScS),並製作成超導量子干涉儀(Superconductor quantum interferrometer, SQUID)的幾何形狀,作為實驗的元件。此部分展 示了在接近乾淨和短極限的ScS中,由多重安德烈夫反射(Multiple Andreev reflection, MAR)引發的冷卻效應在熱遲滯中的作用。透過分析單一ScS和μ- SQUID配置的電流-電壓(I − V)曲線,我們觀察到在超過臨界電流(Ic)和低於能隙(Δ)時電壓的特定增量。這些增量反映了一種在額外電流作用下的超導態增強現象,特別是在V ≤ Δ/e時,與MAR相關的冷卻效應。此外,我們還發 現,在μ-SQUID處於耗散狀態時,正常電流和約瑟夫森超電流可以同時存在, 這是由安德烈夫束縛態的準粒子驅動的。本研究闡釋了小尺度超導體中去平衡 準粒子動態鬆弛過程,為加速超導設備的開發提供了寶貴的視角。
This report examines the impact of non-equilibrium dynamics on quantum coherence in fermionic and bosonic quantum devices. When quantum states are manipulated—whether through microwaves, magnetic fields, particle control, or Coulomb interactions—they are temporarily driven out of equilibrium, leading to phase accumulation and potential decoherence. To investigate this effect, we conduct experiments on two distinct systems: the first part of this report focuses on a fermionic quantum device, while the second part examines a bosonic system.
In the first part, fermionic quantum devices, we adopt the Aharonov-Bohm (AB) ring as a quantum interferometer, established within a two-dimensional electron gas system. We investigate the decoherence mechanisms in an electron quantum interferometer subjected to high-frequency electromagnetic fields and surface acoustic waves (SAWs). The device features an AB ring positioned between two Interdigital Transducers (IDTs), where the AB ring functions as a phase-sensitive probe, while the IDTs serve as tunable sources of environmental disturbances. We applied SAWs generated by IDTs to the ring and extracted the decoherence rate from the AB oscillations. Our study explores the interaction of decoherence processes caused by thermally induced EM fields and SAW-induced piezoelectric currents. By applying RF power, we obtained a decoherence spectrum, observing phase attenuation induced by high-frequency EM fields without thermal heating and determining the conditions for SAW operations that do not lead to decoherence. The mechanism of decoherence is attributed to the enhanced charge-charge interactions in the presence of EM fields and SAWs. Our research is significant for developing flying qubit technology utilizing SAW effects.
In the second part, for the bosonic system, we used focused ion beam processes to fabricate superconducting constriction junctions (ScS) and shape them into Superconductor Quantum Interferometer device(SQUID) geometries as experimental device. This part demonstrates the cooling effect induced by Multiple Andreev Reflection (MAR) in the thermal hysteresis of ScS near the clean and short limit. By analyzing the current-voltage (I − V ) profiles of individual ScS and μ-SQUIDs, we observed specific voltage increments beyond the critical current (Ic) and below the energy gap (Δ). These increments reflect an enhanced superconducting state under the influence of additional current, particularly a cooling effect associated with MAR at V ≤ Δ/e. Furthermore, we found that in the dissipative state of the μ-SQUID, both normal and Josephson supercurrents coexist, driven by Andreev quasiparticles. Our findings provide an insightful understanding of nonequilibrium quasiparticle relaxation in mesoscopic superconducting systems and have strong implications for developing superconducting devices.
1. J. Gorman, D. G. Hasko, and D. A. Williams. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett., 95:090502 (2005).
2. R. Hanson, B. Witkamp, L. M. K. Vandersypen, L. H. Willems van Beveren, J. M. Elzerman, and L. P. Kouwenhoven. Zeeman energy and spin relaxation in a one-electron quantum dot. Phys. Rev. Lett., 91:196802 (2003).
3. Christopher Bäuerle, D. Christian Glattli, Tristan Meunier, Fabien Portier, Patrice Roche, Preden Roulleau, Shintaro Takada, and Xavier Waintal. Coherent control of single electrons: a review of current progress. Rep. Prog. Phys., 81(5):056503 (2018).
4. Michihisa Yamamoto, Shintaro Takada, Christopher Bäuerle, Kenta Watanabe, Andreas D. Wieck, and Seigo Tarucha. Electrical control of a solid-state flying qubit. Nat. Nanotechnol., 7:247 (2012).
5. Sylvain Hermelin, Shintaro Takada, Michihisa Yamamoto, Seigo Tarucha, Andreas D. Wieck, Laurent Saminadayar, Christopher Bäuerle, and Tristan Meunier. Electrons surfing on a sound wave as a platform for quantum optics with flying electrons. Nature, 477:435 (2011).
6. Josef-Stefan Wenzler and Pritiraj Mohanty. Measurement of Aharonov-Bohm oscillations in mesoscopic metallic rings in the presence of a high-frequency electromagnetic field. Phys. Rev. B, 77:121102 (2008).
7. S. Tahamtan, S. P. Abbasi, A. Hodaei, M. S. Zabihi, and J. Sabbaghzadeh. A study on Augeni ohmic contact to n-GaAs using microstructural characteristics. 2011 Symposium on Photonics and Optoelectronics (SOPO), 1–4 (2011).
8. M. F. Goffman, R. Cron, A. Levy Yeyati, P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina. Supercurrent in atomic point contacts and Andreev states. Phys. Rev. Lett., 85:170-173 (2000).
9. A. Zazunov, V. S. Shumeiko, E. N. Bratus', J. Lantz, and G. Wendin. Andreev level qubit. Phys. Rev. Lett., 90:087003 (2003).
10. C. Janvier, L. Tosi, Ç. Ö. Bretheau, L. Girit, M. Stern, P. Bertet, P. Joyez, D. Vion, M. F. Goffman, H. Pothier, and C. Urbina. Coherent manipulation of Andreev states in superconducting atomic contacts. Science, 349:1199 (2015).
11. Tobias Bautze, Christoph Süssmeier, Shintaro Takada, Christoph Groth, Tristan Meunier, Michihisa Yamamoto, Seigo Tarucha, Xavier Waintal, and Christopher Bäuerle. Theoretical, numerical, and experimental study of a flying qubit electronic interferometer. Phys. Rev. B, 89:125432 (2014).
12. S. Takada, C. Bäuerle, M. Yamamoto, K. Watanabe, S. Hermelin, T. Meunier, A. Alex, A. Weichselbaum, J. von Delft, A. Ludwig, A. D. Wieck, and S. Tarucha. Transmission phase in the Kondo regime revealed in a two-path interferometer. Phys. Rev. Lett., 113:126601 (2014).
13. Hermann Edlbauer, Shintaro Takada, Grégoire Roussely, Michihisa Yamamoto, Seigo Tarucha, Arne Ludwig, Andreas D. Wieck, Tristan Meunier, and Christopher Bäuerle. Non-universal transmission phase behaviour of a large quantum dot. Nat. Commun., 8:1710 (2017).
14. Colin Campbell. III–V Compound Semiconductors and Devices. Springer (2020).
15. Y. Aharonov and D. Bohm. Further discussion of the role of electromagnetic potentials in the quantum theory. Phys. Rev., 130:1625-1632 (1963).
16. Richard A. Webb and Sean Washburn. Quantum interference fluctuations in disordered metals. Physics Today, 41(12):46-53 (1988).
17. G. Timp, A. M. Chang, J. E. Cunningham, T. Y. Chang, P. Mankiewich, R. Behringer, and R. E. Howard. Observation of the Aharonov-Bohm effect for 𝜔𝑐𝜏 > 1. Phys. Rev. Lett., 58:2814-2817 (1987).
18. J. Liu, W. X. Gao, K. Ismail, K. Y. Lee, J. M. Hong, and S. Washburn. Correlations between Aharonov-Bohm effects and one-dimensional subband populations in GaAs/AlxGa1−xAs rings. Phys. Rev. B, 48:15148-15157 (1993).
19. E. Buks, R. Schuster, M. Heiblum, D. Mahalu, and V. Umansky. Dephasing in electron interference by a ‘which-path’ detector. Nature, 391:871-874 (1998).
20. Boris Grbić, Renaud Leturcq, Thomas Ihn, Klaus Ensslin, Dirk Reuter, and Andreas D. Wieck. Aharonov-Bohm oscillations in the presence of strong spin-orbit interactions. Phys. Rev. Lett., 99:176803 (2007).
21. A. Yacoby, M. Heiblum, D. Mahalu, and Hadas Shtrikman. Coherence and phase-sensitive measurements in a quantum dot. Phys. Rev. Lett., 74:4047-4050 (1995).
22. R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and Hadas Shtrikman. Phase measurement in a quantum dot via a double-slit interference experiment. Nature, 385:417-420 (1997).
23. Martin Sigrist, Thomas Ihn, Klaus Ensslin, Daniel Loss, Matthias Reinwald, and Werner Wegscheider. Phase coherence in the inelastic cotunneling regime. Phys. Rev. Lett., 96:036804 (2006).
24. A. A. Clerk, M. H. Devoret, S. M. Girvin, Florian Marquardt, and R. J. Schoelkopf. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys., 82:1155-1208 (2010).
25. Guido Burkard, Thaddeus D. Ladd, Andrew Pan, John M. Nichol, and Jason R. Petta. Semiconductor spin qubits. Rev. Mod. Phys., 95:025003 (2023).
26. Markus Büttiker and Andrew M. Martin. Charge relaxation and dephasing in Coulomb-coupled conductors. Phys. Rev. B, 61:2737-2741 (2000).
27. Georg Seelig and Markus Büttiker. Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer. Phys. Rev. B, 64:245313 (2001).
28. Georg Seelig, Sebastian Pilgram, and Markus Büttiker. Decoherence in ballistic mesoscopic interferometers. Turkish J. Phys., 27(5):331-342 (2003).
29. F. P. Milliken, S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb. Effect of partial phase coherence on Aharonov-Bohm oscillations in metal loops. Phys. Rev. B, 36:4465-4468 (1987).
30. S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb. Temperature dependence of the normal-metal Aharonov-Bohm effect. Phys. Rev. B, 32:4789-4792 (1985).
31. M. Büttiker. Symmetry of electrical conduction. IBM J. Res. Dev., 32(3):317-334 (1988).
32. J. P. Bird, K. Ishibashi, D. K. Ferry, Y. Ochiai, Y. Aoyagi, and T. Sugano. Phase breaking in ballistic quantum dots: Transition from two- to zero-dimensional behavior. Phys. Rev. B, 51:18037-18040 (1995).
33. R. M. Clarke, I. H. Chan, C. M. Marcus, C. I. Duruöz, J. S. Harris, K. Campman, and A. C. Gossard. Temperature dependence of phase breaking in ballistic quantum dots. Phys. Rev. B, 52:2656-2659 (1995).
34. A. G. Huibers, M. Switkes, C. M. Marcus, K. Campman, and A. C. Gossard. Dephasing in open quantum dots. Phys. Rev. Lett., 81:200-203 (1998).
35. D. P. Pivin, A. Andresen, J. P. Bird, and D. K. Ferry. Saturation of phase breaking in an open ballistic quantum dot. Phys. Rev. Lett., 82:4687-4690 (1999).
36. Y. Yamauchi, M. Hashisaka, S. Nakamura, K. Chida, S. Kasai, T. Ono, R. Leturcq, K. Ensslin, D. C. Driscoll, A. C. Gossard, and K. Kobayashi. Universality of bias- and temperature-induced dephasing in ballistic electronic interferometers. Phys. Rev. B, 79:161306 (2009).
37. M. Cassé, Z. D. Kvon, G. M. Gusev, E. B. Olshanetskii, L. V. Litvin, A. V. Plotnikov, D. K. Maude, and J. C. Portal. Temperature dependence of the Aharonov-Bohm oscillations and the energy spectrum in a single-mode ballistic ring. Phys. Rev. B, 62:2624-2629 (2000).
38. Kuan Ting Lin, Yiping Lin, C. C. Chi, J. C. Chen, T. Ueda, and S. Komiyama. Temperature- and current-dependent dephasing in an Aharonov-Bohm ring. Phys. Rev. B, 81:035312 (2010).
39. A. E. Hansen, A. Kristensen, S. Pedersen, C. B. Sørensen, and P. E. Lindelof. Mesoscopic decoherence in Aharonov-Bohm rings. Phys. Rev. B, 64:045327 (2001).
40. T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies. One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction. Phys. Rev. Lett., 56:1198-1201 (1986).
41. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky. Suppression of localization effects by the high-frequency field and the Nyquist noise. Solid State Commun., 39(5):619 (1981).
42. B. L. Altshuler, M. E. Gershenson, and I. L. Aleiner. Phase relaxation of electrons in disordered conductors. Physica E, 3(1):58-68 (1998).
43. J. Wei, S. Pereverzev, and M. E. Gershenson. Microwave-induced dephasing in one-dimensional metal wires. Phys. Rev. Lett., 96:086801 (2006).
44. Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc., s1-17(1):4-11 (1885).
45. J. M. Shilton, D. R. Mace, V. I. Talyanskii, M. Pepper, M. Y. Simmons, A. C. Churchill, and D. A. Ritchie. Effect of spatial dispersion on acoustoelectric current in a high-mobility two-dimensional electron gas. Phys. Rev. B, 51:14770-14773 (1995).
46. G. D. Alley. Interdigital capacitors and their application to lumped-element microwave integrated circuits. IEEE Trans. Microw. Theory Tech., 18(12):1028-1033 (1970).
47. P. Mohanty, E. M. Q. Jariwala, and R. A. Webb. Intrinsic decoherence in mesoscopic systems. Phys. Rev. Lett., 78:3366-3369 (1997).
48. J. J. Lin and J. P. Bird. Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. J. Phys. Condens. Matter, 14(18):R501 (2002).
49. T. J. Thornton, M. L. Roukes, A. Scherer, and B. P. Van de Gaag. Boundary scattering in quantum wires. Phys. Rev. Lett., 63:2128-2131 (1989).
50. R. J. Schneble, M. Kataoka, C. J. B. Ford, C. H. W. Barnes, D. Anderson, G. A. C. Jones, I. Farrer, D. A. Ritchie, and M. Pepper. Quantum-dot thermometry of electron heating by surface acoustic waves. Appl. Phys. Lett., 89(12):122104 (2006).
51. Pawel Utko, Poul Erik Lindelof, and Kurt Gloos. Heating in single-electron pumps driven by surface acoustic waves. Appl. Phys. Lett., 88(20):202113 (2006).
52. J. M. Shilton, V. I. Talyanskii, M. Pepper, D. A. Ritchie, J. E. F. Frost, C. J. B. Ford, C. G. Smith, and G. A. C. Jones. High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J. Phys. Condens. Matter, 8(38):L531 (1996).
53. B. L. Altshuler, A. G. Aronov, and B. Z. Spivak. Influence of magnetic field on weak localization. Sov. Phys. JETP Lett., 33:94 (1981).
54. D. Y. Sharvin and Y. V. Sharvin. Magnetic flux quantization in a cylindrical film of normal metal. Sov. Phys. JETP Lett., 34:273 (1981).
55. V. I. Talyanskii, J. M. Shilton, J. Cunningham, M. Pepper, C. J. B. Ford, C. G. Smith, E. H. Linfield, D. A. Ritchie, and G. A. C. Jones. Quantized current in one-dimensional channel induced by surface acoustic waves. Physica B, 249-251:140 (1998).
56. Kuan Ting Lin, Yiping Lin, C. C. Chi, and J. C. Chen. Asymmetric transmission-induced probe-configuration-dependent dephasing in an Aharonov-Bohm ring. Phys. Rev. B, 84:235404 (2011).
57. Tung Sheng Lo, Yi Ping Lin, Phillip M. Wu, Dah Chin Ling, C. C. Chi, and Jeng Chung Chen. Mode dependency of quantum decoherence studied via an Aharonov-Bohm interferometer. Phys. Rev. Lett., 116:080401 (2016).
58. Colin Campbell. Surface Acoustic Wave Devices for Mobile and Wireless Communications, Four-Volume Set. Academic Press (1996).
59. Alexander van Oudenaarden, Michel H. Devoret, Yu. V. Nazarov, and J. E. Mooij. Magneto-electric Aharonov–Bohm effect in metal rings. Nature, 391:768-770 (1998).
60. W. G. van der Wiel, Yu. V. Nazarov, S. De Franceschi, T. Fujisawa, J. M. Elzerman, E. W. G. M. Huizeling, S. Tarucha, and L. P. Kouwenhoven. Electromagnetic Aharonov-Bohm effect in a two-dimensional electron gas ring. Phys. Rev. B, 67:033307 (2003).
61. P. G. N. de Vegvar, G. Timp, P. M. Mankiewich, R. Behringer, and J. Cunningham. Tunable Aharonov-Bohm effect in an electron interferometer. Phys. Rev. B, 40:3491-3494 (1989).
62. C. J. B. Ford, A. B. Fowler, J. M. Hong, C. M. Knoedler, S. E. Laux, J. J. Wainer, and S. Washburn. Gated, asymmetric rings as tunable electron interferometers. Surf. Sci., 229(1):307-311 (1990).
63. Sven S. Buchholz, Saskia F. Fischer, Ulrich Kunze, Matthew Bell, Dirk Reuter, and Andreas D. Wieck. Control of the transmission phase in an asymmetric four-terminal Aharonov-Bohm interferometer. Phys. Rev. B, 82:045432 (2010).
64. Michel H. Devoret, John M. Martinis, and John Clarke. Measurements of macroscopic quantum tunneling out of the zero-voltage state of a current-biased Josephson junction. Phys. Rev. Lett., 55:1908-1911 (1985).
65. Michael Tinkham. Introduction to Superconductivity. McGraw-Hill (1996).
66. Travis Dirks, Taylor L. Hughes, Siddhartha Lal, Bruno Uchoa, Yung-Fu Chen, Cesar Chialvo, Paul M. Goldbart, and Nadya Mason. Transport through Andreev bound states in a graphene quantum dot. Nat. Phys., 7:386-390 (2011).
67. Christian Jünger, Sebastian Lehmann, Kimberly A. Dick, Claes Thelander, Christian Schönenberger, and Andreas Baumgartner. Intermediate states in Andreev bound state fusion. Commun. Phys., 6(1):190 (2023).
68. V. E. Shaternik, A. N. Ivanjuta, and A. V. Shaternik. Nonuniform current flow in superconductor-fullerene-superconductor junctions. Low Temp. Phys., 32(7):633-637 (2006).
69. L. Bretheau, Ç. Ö. Girit, H. Pothier, D. Esteve, and C. Urbina. Exciting Andreev pairs in a superconducting atomic contact. Nature, 499:312 (2013).
70. A. Levy Yeyati, A. Martín-Rodero, and F. J. García-Vidal. Self-consistent theory of superconducting mesoscopic weak links. Phys. Rev. B, 51:3743-3753 (1995).
71. N. van der Post, E. T. Peters, I. K. Yanson, and J. M. van Ruitenbeek. Subgap structure as function of the barrier in atom-size superconducting tunnel junctions. Phys. Rev. Lett., 73:2611-2613 (1994).
72. A. Martín-Rodero, F. J. García-Vidal, and A. Levy Yeyati. Microscopic theory of Josephson mesoscopic constrictions. Phys. Rev. Lett., 72:554-557 (1994).
73. K. Flensberg, J. Bindslev Hansen, and M. Octavio. Subharmonic energy-gap structure in superconducting weak links. Phys. Rev. B, 38:8707-8711 (1988).
74. A. Gumann, T. Dahm, and N. Schopohl. Microscopic theory of superconductor-constriction-superconductor Josephson junctions in a magnetic field. Phys. Rev. B, 76:064529 (2007).
75. K. K. Likharev. Superconducting weak links. Rev. Mod. Phys., 51:101-159 (1979).
76. R. Tidecks. Current-Induced Nonequilibrium Phenomena in Quasi-One-Dimensional Superconductors. Springer, Berlin (1990).
77. W. J. Skocpol, M. R. Beasley, and M. Tinkham. Self-heating hotspots in superconducting thin-film microbridges. J. Appl. Phys., 45(9):4054-4066 (1974).
78. M. Tinkham, J. U. Free, C. N. Lau, and N. Markovic. Hysteretic
𝐼𝑉 curves of superconducting nanowires. Phys. Rev. B, 68:134515 (2003).
79. Dibyendu Hazra, Lætitia M. A. Pascal, Hervé Courtois, and Anjan K. Gupta. Hysteresis in superconducting short weak links and
𝜇
μ-SQUIDs. Phys. Rev. B, 82:184530 (2010).
80. James F. Ziegler. SRIM-2003. Nucl. Instrum. Methods Phys. Res. B, 219-220:1027-1036 (2004).
81. Z. W. Xu, F. Z. Fang, Y. Q. Fu, S. J. Zhang, T. Han, and J. M. Li. Fabrication of micro/nano-structures using focused ion beam implantation and
XeF2 gas-assisted etching. J. Micromech. Microeng., 19(5):054003 (2009).
82. See Supplemental Material at [URL will be inserted by publisher] for details.
83. J. M. van Ruitenbeek, A. Alvarez, I. Piñeyro, C. Grahmann, P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina. Adjustable nanofabricated atomic size contacts. Rev. Sci. Instrum., 67(1):108-111 (1996).
84. D. Hazra, J. R. Kirtley, and K. Hasselbach. Nano-superconducting quantum interference devices with suspended junctions. Appl. Phys. Lett., 104(15):152603 (2014).
85. Nikhil Kumar, T. Fournier, H. Courtois, C. B. Winkelmann, and Anjan K. Gupta. Reversibility of superconducting Nb weak links driven by the proximity effect in a quantum interference device. Phys. Rev. Lett., 114:157003 (2015).
86. L. Angers, F. Chiodi, G. Montambaux, M. Ferrier, S. Guéron, H. Bouchiat, and J. C. Cuevas. Proximity dc SQUIDs in the long-junction limit. Phys. Rev. B, 77:165408 (2008).
87. D. Hazra, J. R. Kirtley, and K. Hasselbach. Retrapping current in bridge-type nano-SQUIDs. Phys. Rev. Applied, 4:024021 (2015).
88. A. F. Mayadas. Intrinsic resistivity and electron mean free path in aluminum films. J. Appl. Phys., 39:4241 (1968).
89. Daniel Gall. Electron mean free path in elemental metals. J. Appl. Phys., 119(8):085101 (2016).
90. Charles P. Poole Jr., Horacio A. Farach, and Richard J. Creswich. Superconductivity. Academic Press (1995).
91. Dibyendu Hazra. Nanobridge superconducting quantum interference devices: Beyond the Josephson limit. Phys. Rev. B, 99:144505 (2019).
92. D. Hazra, J. R. Kirtley, and K. Hasselbach. Retrapping current in bridge-type nano-squids. Phys. Rev. Applied, 4:024021 (2015).
93. G. J. Dolan and L. D. Jackel. Voltage measurements within the nonequilibrium region near phase-slip centers. Phys. Rev. Lett., 39:1628-1631 (1977).
94. K. Hasselbach, D. Mailly, and J. R. Kirtley. Micro-superconducting quantum interference device characteristics. J. Appl. Phys., 91(7):4432-4437 (2002).
95. John Clarke and Alex I. Braginski. The SQUID Handbook, Vol. I. Wiley-VCH (2004).
96. M. Octavio, W. J. Skocpol, and M. Tinkham. Nonequilibrium-enhanced supercurrents in short superconducting weak links. Phys. Rev. B, 17:159-169 (1978).