研究生: |
林易仕 Lin, Yi-Shi |
---|---|
論文名稱: |
具電網與微電網雙向操作之電動車同步磁阻馬達驅動系統 EV SYNCHRONOUS RELUCTANCE MOTOR DRIVE WITH BIDIRECTIONAL OPERATIONS TO GRID AND MICROGRID |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
李政道
Lee, Jeng-Dao 陳盛基 Chen, Seng-Chi |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 電動車 、同步磁阻馬達 、建模 、蓄電池 、超電容 、介面轉換器 、變頻器 、CLLC 諧振轉換器 、切換式整流器 、電流控制 、速度控制 、轉矩控制 、換相移位 、效率 、G2V 、V2G 、充電 、V2M 、M2V |
外文關鍵詞: | EV, SynRM, modeling, battery, SC, interface converter, inverter, CLLC converter, SMR, current control, speed control, commutation shift, torque control, efficiency, G2V, V2G, charging, V2M, M2V |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之目標在於開發一蓄電池/超級電容供電之電動車同步磁阻馬達驅動系統,具隔離雙向電網及微電網互聯操作功能。首先深入探究同步磁阻馬達驅動控制之一些關鍵議題,包括馬達結構、繞組電感特性、轉矩產生特性、以及槽齒諧波效應等。接著,建立及實測性能評定蓄電池直接供電之電動車馬達驅動系統,藉由妥適處理下列關鍵技術,獲得良好之穩態及動態操控特性:(i) 馬達建模及參數估測,鐵損等效電阻、直軸及交軸電感均以逼近曲線表之;(ii) 換相角以適應換相技巧,應用逼近之馬達參數決定,獲得馬達總損失之最小化;(iii) 考慮反電動勢與槽齒效應之準確電流追控;(iv) 量化及速度強健控制;(v) 於靜止框利用估測之磁通及轉矩從事直接轉矩控制,進一步提升馬達的轉矩追蹤性能,同時也考慮適當之換相角設定。以實測結果證實所建電動車驅動系統之動態驅控及靜態轉換效率特性。
其次開發具升壓直流鏈之蓄電池/超電容混合供電電動車同步磁阻馬達驅動系統。功率型儲能裝置之超電容,可有效協助電池之快速充放電操作。兩儲能裝置經個別之雙向介面轉換器接至共同直流鏈,由適當設計之電力電路及控制機構,均具有正常之充放電操控特性。又由所提之功率管理策略,獲得良好之暫態分流特性。相較於定壓方式,變壓直流鏈供電之驅動系統於廣速度範圍具較佳之驅控效能。
最後從事所建電動車驅動系統之隔離雙向聯網操作,用以研習之電路包括隔離CLLC諧振轉換器及雙向三相變頻器。變頻器之三個臂可安排成三相三線或單相三線變頻器,提供三相或單相交流電源。在電網至車輛操作模式,車載電池可由電網充電,具功因矯正控制。反之,於車輛至電網之放電操作模式,預設之功率可返送至電網。應用所建之雙向CLLC轉換器,車輛至微電網及微電網至車輛之雙向隔離操作亦可施行。
The objective of this thesis is to develop a battery/supercapacitor hybrid powered electric vehicle (EV) synchronous reluctance motor (SynRM) drive with bidirectional grid and microgrid connected operations. Initially, various critical aspects of SynRM drive control are delved into, including motor structure, winding inductance characteristics, torque generation properties, and slot ripple effects. Subsequently, a battery directly powered EV SynRM drive is established and evaluated experimentally. Good steady-state and dynamic operating characteristics are achieved by handling the key technologies: (i) Motor physical modeling and parameter estimation. The core-loss resistance, d-axis and q-axis inductances are represented by fitted curves; (ii) The adaptive commutation shifting (ACS) approach is applied to set the commutation angle using the fitted motor parameters for yielding minimized motor total loss; (iii) Precise current tracking control considering the slotting and back electromotive force (EMF) effects; (iv) Quantitative and robust speed control; and (v) Direct torque control utilizing the estimated magnetic flux and developed torque in stationary frame to enhance motor torque tracking performance. The suitable commutation angle setting is also considered simultaneously. A lot of measured results are provided to verify the established EV drive performance in driving dynamic behaviors and steady-state energy conversion efficiencies.
Next, the battery/supercapacitor powered EV SynRM drive with boosted DC- link voltage is developed. The supercapacitor (SC) serves as power type storage device assisting in rapid battery charging and discharging operations. Each storage device is interfaced to the DC-link via bilateral boost-buck converter. Normal charging and discharging operations are possessed by the suitably designed schematics and control schemes. Moreover, through the proposed power management strategy, favorable transient current sharing characteristics between the battery and the SC are realized. Thanks to the varied DC-link voltage arrangement, the improved driving performance over wide speed range compared to the fixed-voltage approach is achieved.
Finally, the EV isolated bidirectional grid-connected operations are presented. The circuit comprises an isolated CLLC resonant converter and a bidirectional three-phase inverter. The inverter schematic with three switch legs can be arranged as a three-phase inverter or a single-phase three-wire (1P3W) inverter, providing three-phase or single-phase AC source. In grid-to-vehicle (G2V) operation, the on-board battery charging from the grid with power factor correction is performed. Conversely, in vehicle-to-grid (V2G) discharging operation, the preset power can be sent back to the utility grid. With the CLLC converter, the bidirectional isolated vehicle-to-microgrid (V2M) and microgrid-to-vehicle (M2V) operations are also conductible.
[1]M. D. Nardo, G. L. Calzo, M. Galea, and C. Gerada, “Design optimization of a high-speed synchronous reluctance machine,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 233-243, 2018.
[2]L. Masisi, P. Pillay and S. S. Williamson, “A modulation strategy for a three-level inverter synchronous reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1874-1881, March-April 2016.
[3]Z. Liu, Y. Hu, J. Wu, B. Zhang and G. Feng, “A novel modular permanent magnet- assisted synchronous reluctance Motor,” IEEE Access, vol. 9, pp. 19947-19959, 2021.
[4]B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall, Inc., 2002.
[5]S. Morimoto, M. Sanada and Y. Takeda, “High-performance current-sensorless drive for PMSM and SynRM with only low-resolution position sensor,” IEEE Ind. Appl. Mag., vol. 39, no. 3, pp. 792-801, May-June 2003.
[6]H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto, and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE IAS, 1999, vol. 2, pp. 840-845.
[7]L. Lavrinovicha and J. Dirba, “Comparison of permanent magnet synchronous motor and synchronous reluctance motor based on their torque per unit volume,” in Proc. IEEE EPQSRC, 2014, pp. 233-236.
[8]T. A. Huynh and M. -F. Hsieh, “Comparative study of PM-Assisted SynRM and IPMSM on constant power speed range for EV applications,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1-6, Nov. 2017.
[9]O. Payza, Y. Demir and M. Aydin, “Investigation of losses for a concentrated winding high-speed permanent magnet-assisted synchronous reluctance motor for washing machine application,” IEEE Trans. Magn., vol. 54, no. 11, pp. 1-5, Nov. 2018.
[10]N. Bianchi, S. Bolognani, E. Carraro, M. Castiello and E. Fornasiero, “Electric vehicle traction based on synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 52, no. 6, pp. 4762-4769, Nov.-Dec. 2016.
[11]Y. Wang, S. Nuzzo, H. Zhang, W. Zhao, C. Gerada and M. Galea, “Challenges and opportunities for wound field synchronous generators in future more electric aircraft,” Trans. Transp. Electrif., vol. 6, no. 4, pp. 1466-1477, Dec. 2020.
[12]A. A. Arkadan, M. N. ElBsat and M. A. Mneimneh, “Particle swarm design optimization of ALA rotor SynRM for traction applications,” IEEE Trans. Magn., vol. 45, no. 3, pp. 956-959, March 2009.
[13] I. Jlassi and A. J. Marques Cardoso, “Model predictive current control of synchronous reluctance motors, including saturation and iron losses,” 2018 XIII International Conference on Electrical Machines, Alexandroupoli, Greece, 2018, pp. 1598-1603.
B. Performance Enhancement of SynRM Drive
Motor design
[14] T. Matsuo and T. A. Lipo, “Rotor design optimization of synchronous reluctance machine,” IEEE Trans. Energy Convers., vol. 9, no. 2, pp. 359-365, 1994.
[15] A. Vagati, M. Pastorelli, G. Francheschini, and S. C. Petrache, “Design of low-torque-ripple synchronous reluctance motors,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 758-765, 1998.
[16] R. R. Moghaddam, F. Magnussen, and C. Sadarangani, “Novel rotor design optimization of synchronous reluctance machine for low torque ripple,” in Proc. IEEE ICEM, 2012, pp. 720-724.
[17] N. Bianchi, M. Degano, and E. Fornasiero, “Sensitivity analysis of torque ripple reduction of synchronous reluctance and interior PM motors,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 187-195, 2015.
[18] M. Sanada, K. Hiramoto, S. Morimoto, and Y. Takeda, “Torque ripple improvement for synchronous reluctance motor using an asymmetric flux barrier arrangement,” IEEE Trans. Ind. Appl., vol. 40, no. 4, pp. 1076-1082, 2004.
[19] J. Ikäheimo, J. Kolehmainen, T. Känsäkangas, V. Kivelä, and R. R. Moghaddam, “Synchronous high-speed reluctance machine with novel rotor construction,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2969-2975, 2014.
[20] M. Palmieri, M. Perta, and F. Cupertino, “Design of a 50.000-r/min synchronous reluctance machine for an aeronautic diesel engine compressor,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3831-3838, 2016.
[21] A. Credo, G. Fabri, M. Villani, and M. Popescu, “Adopting the topology optimization in the design of high-speed synchronous reluctance motors for electric vehicles,” IEEE Trans. Ind. Appl., vol. 56, no. 5, pp. 5429-5438, 2020.
[22] M. Barcaro, N. Bianchi, and F. Magnussen, “Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2495-2502, 2012.
MTPA and Loss minimization control
[23] P. Niazi, H. A. Toliyat and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-Assisted synRM for traction applications,” Trans. Veh. Technol., vol. 56, no. 4, pp. 1538-1545, July 2007.
[24] S. Yamamoto, K. Tomishige, and T. Ara, “A method to calculate transient characteristics of synchronous reluctance motors considering iron loss and cross-magnetic saturation,” IEEE Trans. Ind. Appl., vol. 43, no. 1, pp. 47-56, 2007.
[25] W. Lee, J. Kim, P. Jang and K. Nam, “On-Line MTPA control method for synchronous reluctance motor,” IEEE Trans. Ind. Appl., vol. 58, no. 1, pp. 356-364, Jan.-Feb. 2022.
[26] S. Bolognani, L, Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20-28, 2011.
[27] E. Daryabeigi, H. A. Zarchi, G. R. A. Markadeh, J. Soltani, and F. Blaabjerg, “Online MTPA control approach for synchronous reluctance motor drives based on emotional controller,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2157-2166, 2015.
[28] S. M. Ferdous, P. Garcia, M. A. M. Oninda, and M. A. Hoque, “MTPA and field weakening control of synchronous reluctance motor,” in Proc. IEEE ICECE, 2016, pp. 598-601.
[29] E. M. Rashad, T. S. Radwan, and M. A. Rahman, “A maximum torque per ampere vector control strategy for synchronous reluctance motors considering saturation and iron losses,” in Proc. IEEE IAS, 2004, vol. 4, pp. 2411-2417.
[30] L. Ortombina, F. Tinazzi and M. Zigliotto, “Adaptive maximum torque per ampere control of synchronous reluctance motors by radial basis function networks,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 7, no. 4, pp. 2531-2539, Dec. 2019.
[31] M. Murataliyev, M. Degano, M. Di Nardo, N. Bianchi and C. Gerada, “Synchronous Reluctance Machines: A Comprehensive Review and Technology Comparison,” Proc., vol. 110, no. 3, pp. 382-399, March 2022.
[32] O. Brun et al., “A level-set-based topology optimization for maximizing the torque of synchronous reluctance machines,” IEEE Trans. Magn., vol. 60, no. 3, pp. 1-4, March 2024.
[33] H. Diab, S. Asfirane and Y. Amara, “Analysis of efficiency maps of synchronous machines,” Trans. Magn., vol. 59, no. 11, pp. 1-5, Nov. 2023.
[34] Y. Wang, D. Ionel, D. G. Dorrell and S. Stretz, “Establishing the power factor limitations for synchronous reluctance machines,” IEEE Trans. Magn., vol. 51, no. 11, pp. 1-4, Nov. 2015.
[35] S. G. Chen, F. J. Lin, M. S. Huang, S. P. Yeh and T. S. Sun, “Proximate maximum efficiency control for synchronous reluctance motor via AMRCT and MTPA control,” IEEE-ASME T MECH, vol. 28, no. 3, pp. 1404-1414, June 2023.
Current control
[36] O. Kukrer, S. Bayhan and H. Komurcugil, “Model-Based current control strategy with virtual time constant for improved dynamic response of three-phase grid-connected VSI,” IEEE Trans. Ind. Electron., vol. 66, no. 6, pp. 4156-4165, June 2019.
[37] Z. Zhang, X. Liu, Y. Zhang, C. Zhang and W. Deng, “A novel current control method based on dual-mode structure repetitive control for three-phase power electronic load,” IEEE Access., vol. 9, pp. 144406-144416, 2021.
[38] G. Gatto, I. Marongiu, A. Serpi, and A. Perfetto, “Predictive control of synchronous reluctance motor drive,” in Proc. IEEE ISIE, 2007, pp. 1147-1152.
[39] M. C. Chou and C. M. Liaw, “Development of robust current 2-DOF controllers for a permanent magnet synchronous motor drive with reaction wheel load,” IEEE Trans. Power Electron., vol. 24, no. 5, pp. 1304-1320, 2009.
Direct torque control
[40] Jun-Koo Kang and S. K. Sul, “New direct torque control of induction motor for minimum torque ripple and constant switching frequency,” IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1076-1082, 1999.
[41] Y. Inoue, S. Morimoto, and M. Sanada, “A novel control scheme for maximum power operation of synchronous reluctance motors including maximum torque per flux control,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 115-121, 2011.
[42] R. Morales-Caporal and M. Pacas, “Encoderless predictive direct torque control for synchronous reluctance machines at very low and zero speed,” IEEE Trans. Ind. Electron., vol. 55, no. 12, pp. 4408-4416, Dec. 2008.
[43] Lixin Tang, Limin Zhong, M. F. Rahman, and Y. Hu, “A novel direct torque controlled interior permanent magnet synchronous machine drive with low ripple in flux and torque and fixed switching frequency,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 346-354, 2004.
[44] Y. Inoue, S. Morimoto, and M. Sanada, “Comparative study of PMSM drive systems based on current control and direct torque control in flux-weakening control region,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2382-2389, Nov.-Dec. 2012
[45] M. F. Rahman, M. E. Haque, Lixin Tang, and Limin Zhong, “Problems associated with the direct torque control of an interior permanent-magnet synchronous motor drive and their remedies,” IEEE Trans. Ind. Electron., vol. 51, no. 4, pp. 799-809, 2004.
C. Electric Vehicle and Related Motors
[46] Z. Yang, F. Shang, I. P. Brown and M. Krishnamurthy, “Comparative Study of interior permanent magnet, induction, and switched reluctance motor drives for ev and hev applications,” IEEE Trans. Transp. Electrif., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[47] H. C. Righolt and F. G. Rieck, “Energy chain and efficiency in urban traffic for ICE and EV,” in Proc. IEEE EVS27, pp. 1-7, 2013.
[48] L. Athanasopoulou, H. Bikas, and P. Stavropoulos, “Comparative well-to-wheel emissions assessment of internal combustion engine and battery electric vehicles,” in Proc. Procedia CIRP, vol. 78, pp. 25-30, 2018.
[49] Kristoffer W. Lie, Trym A. Synnevåg, Jacob J. Lamb, and Kristian M. Lien, “The carbon footprint of electrified city buses: a case study in Trondheim, Norway,” Energies, vol. 14, pp. 770, 2021.
D. Energy Storage Systems in EV
[50] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[51] T. Horiba, “Lithium-ion battery systems,” Proc. IEEE Proc., vol. 102, no. 6, pp. 939-950, June 2014.
[52] E. Chemali, M. Preindl, P. Malysz, and A. Emadi, “Electrochemical and electrostatic energy storage and management systems for electric drive vehicles: state-of-the-art review and future trends,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1117-1134, Sept. 2016.
[53] M. A. Hannan, M. M. Hoque, A. Hussain, Y. Yusof, and P. J. Ker, “State-of-the-art and energy management system of Lithium-ion batteries in electric vehicle applications: issues and recommendations,” IEEE Access, vol. 6, pp. 19362-19378, 2018.
[54] S. Thangavel, D. Mohanraj, T. Girijaprasanna, S. Raju, C. Dhanamjayulu, and S. M. Muyeen, “A comprehensive review on electric vehicle: battery management system, charging station, traction motors,” IEEE Access, vol. 11, pp. 20994-21019, 2023.
[55] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles,” Proc. IEEE Proc., vol. 95, no. 4, pp. 806-820, Apr. 2007.
[56] G. O. Suvire, P. E. Mercado, and L. J. Ontiveros, “Comparative analysis of energy storage technologies to compensate wind power short-term fluctuations,” IEEE/PES Transmiss. Distrib. Conf. Expo., pp. 522-528, 2010.
[57] M. Farhadi and O. Mohammed, “Energy storage technologies for high-power applications,” IEEE Trans. Ind. Appl., vol. 52, no. 3, pp. 1953-1961, May-June 2016.
[58] T. Schoenen, M. S. Kunter, M. D. Hennen, and R. W. De Doncker, “Advantages of a variable DC-link voltage by using a DC-DC converter in hybrid-electric vehicles,” IEEE VPPC, pp. 1-5, 2010.
[59] M. O. Badawy, T. Husain, Y. Sozer, and J. A. De Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 5810-5819, Nov.-Dec. 2017.
[60] N. Zhao, N. Schofield, R. Yang, and R. Gu, “Investigation of DC-link voltage and temperature variations on EV traction system design,” IEEE Trans. Ind. Appl., vol. 53, no. 4, pp. 3707-3718, July-Aug. 2017.
[61] S. Xiao, X. Gu, Z. Wang, T. Shi, and C. Xia, “A novel variable DC-link voltage control method for PMSM driven by a quasi-Z-source inverter,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3878-3890, Apr. 2020.
E. DC/DC Interface Converters
[62] Y. Du, S. Lukic, B. Jacobson, and A. Huang, “Review of high power isolated bi-directional DC-DC converters for PHEV/EV DC charging infrastructure,” IEEE ECCE, pp. 553-560, 2011.
[63] V. Sidorov, A. Chub and D. Vinnikov, “Series-Resonant DC-DC Interface Converter for Battery Integration into DC Microgrids,” IEEE PEM., Brasov, Romania, 2022.
[64] I. P. Farneth, “Design of a phase-shifted ZVS full-bridge front-end DC/DC converter for fuel cell inverter applications,” IEEE ITEC, pp. 1-6, 2014.
[65] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional DC–DC converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, July/Aug. 2015.
[66] A. Mallik and A. Khaligh “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, Aug. 2017.
[67] S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: an overview,” IEEE Access, vol. 7, pp. 117997-118019, 2019.
[68] M. S. Bhaskar, V. K. Ramachandaramurthy, S. Padmanaban, F. Blaabjerg, D. M. Ionel, M. Mitolo, and D. Almakhles, “Survey of DC-DC non-isolated topologies for unidirectional power flow in fuel cell vehicles,” IEEE Access, vol. 8, pp. 178130-178166, 2020.
[69] I. Alhurayyis, A. Elkhateb, and J. Morrow, “Isolated and nonisolated DC-to-DC converters for medium-voltage DC networks: a review,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 9, no. 6, pp. 7486-7500, Dec. 2021.
[70] E. D. Aranda, S. P. Litrán, and M. B. F. Prieto, “Combination of interleaved single-input multiple-output DC-DC converters,” CSEE J. Power Energy Syst., vol. 8, no. 1, pp. 132-142, Jan. 2022.
F. EV Bidirectional Battery Chargers
G2V Operation
[71] S. Haghbin, S. Lundmark, M. Alaküla, and O. Carlson, “An isolated high-power integrated charger in electrified-vehicle applications,” IEEE Trans. Veh. Technol., vol. 60, no. 9, pp. 4115-4126, Nov. 2011.
[72] S. Haghbin, S. Lundmark, M. Alakula, and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 459-473, Feb. 2013.
[73] S. Haghbin, K. Khan, S. Zhao, M. Alakula, S. Lundmark, and O. Carlson, “An integrated 20-kW motor drive and isolated battery charger for plug-in vehicles,” IEEE Trans. Power Electron., vol. 28, no. 8, pp. 4013-4029, Aug. 2013.
[74] N. Tashakor, E. Farjah and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, March 2017.
[75] B. Whitaker et al., “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606-2617, May 2014.
[76] J. Y. Lee and B. M. Han, “A Bidirectional Wireless Power Transfer EV Charger Using Self-Resonant PWM,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 1784-1787, April 2015.
[77] N. Tashakor, E. Farjah, and T. Ghanbari, “A bidirectional battery charger with modular integrated charge equalization circuit,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2133-2145, Mar. 2017.
[78] R. Hou and A. Emadi, “Applied integrated active filter auxiliary power module for electrified vehicles with single-phase onboard chargers,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 1860-1871, Mar. 2017.
[79] H. Haga and F. Kurokawa, “Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicle,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2498-2507, Apr. 2017.
[80] D. H. Kim, M. J. Kim, and B. K. Lee, “An integrated battery charger with high power density and efficiency for electric vehicles,” IEEE Trans. Power Electron., vol. 32, no. 6, pp. 4553-4565, June 2017.
[81] V. Monteiro, J. C. Ferreira, A. A. Nogueiras Meléndez, C. Couto, and J. L. Afonso, “Experimental validation of a novel architecture based on a dual-stage converter for off-board fast battery chargers of electric vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[82] H. V. Nguyen, D. D. To, and D. C. Lee, “Onboard battery chargers for plug-in electric vehicles with dual functional circuit for low-voltage battery charging and active power decoupling,” IEEE Access, vol. 6, pp. 70212-70222, 2018.
[83] S. Jeong, Y. Jeong, J. Kwon, and B. Kwon, “A soft-switching single-stage converter with high efficiency for a 3.3-kW on-board charger,” IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6959-6967, Sept. 2019.
[84] H. V. Nguyen, D. C. Lee, and F. Blaabjerg, “A novel SiC-based multifunctional onboard battery charger for plug-in electric vehicles,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5635-5646, May 2021.
[85] J. Cai and X. Zhao, “An on-board charger integrated power converter for EV switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 68, no. 5, pp. 3683-3692, May 2021.
[86] M. Yilmaz and P. T. Krein, “Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[87] S. Habib, M. M. Khan, F. Abbas, L. Sang, M. U. Shahid, and H. Tang, “A comprehensive study of implemented international standards, technical challenges, impacts and prospects for electric vehicles,” IEEE Access, vol. 6, pp. 13866-13890, 2018.
[88] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “EV/PHEV bidirectional charger assessment for v2g reactive power operation,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5717-5727, Dec. 2013.
Switched-mode Rectifiers
[89] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, June 2004.
[90] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, May 2007.
[91] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems-part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[92] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May 2015.
[93] L. Huber, M. Kumar, and M. M. Jovanović, “Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7123-7137, Dec. 2015.
[94] R. Huang, J. Xu, Q. Chen, L. Wang, and X. Geng, “Independent current control with differential feedforward for three-phase boost PFC rectifier in wide AC input frequency application,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 10, no. 6, pp. 7062-7071, Dec. 2022.
Resonant Converters
[95] F. Musavi, M. Craciun, D. S. Gautam, W. Eberle, and W. G. Dunford, “An LLC resonant DC–DC converter for wide output voltage range battery charging applications,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5437-5445, Dec. 2013.
[96] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[97] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[98] G. A. Mudiyanselage, N. Keshmiri and A. Emadi, “A review of DC-DC resonant converter topologies and control techniques for electric vehicle applications,” IEEE Open J. Power Electron., vol. 4, pp. 945-964, 2023.
[99] U. Kundu and P. Sensarma, “Gain-relationship-based automatic resonant frequency tracking in parallel LLC converter,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 874-883, Feb. 2016.
[100] P. He and A. Khaligh, “Comprehensive analyses and comparison of 1 kW isolated DC–DC converters for bidirectional EV charging systems,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 147-156, Mar. 2017.
[101] L. F. Martins, D. Stone, and M. Foster, “Modelling of bidirectional CLLC resonant converter operating under frequency modulation,” IEEE ECCE, 2019.
[102] A. Khaligh and M. D'Antonio, “Global trends in high-power on-board chargers for electric vehicles,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3306-3324, Apr. 2019.
[103] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active saturation mitigation in high-density dual-active-bridge DC–DC converter for on- board EV charger applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020.
[104] J. Min and M. Ordonez, “Bidirectional resonant CLLC charger for wide battery voltage range: asymmetric parameters methodology,” IEEE Trans. Power Electron., vol. 36, no. 6, pp. 6662-6673, June 2021.
[105] Y. Cao, M. Ngo, R. Burgos, A. Ismail, and D. Dong, “Switching transition analysis and optimization for bidirectional CLLC resonant DC transformer,” IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3786-3800, Apr. 2022.
V2G Operations
[106] C. -H. Jo and D. -H. Kim, “Reconfigurable LLC resonant converter for bidirectional electric-vehicle chargers,” IEEE Trans. Power Electron., vol. 38, no. 12, pp. 15168-15172, Dec. 2023.
[107] M. Yilmaz and P. T. Krein, “Review of the impact of vehicle-to-grid technologies on distribution systems and utility interfaces,” IEEE Trans. Power Electron., vol. 28, no.12, pp. 5673-5689, Dec. 2013.
[108] C. Liu, K. T. Chau, D. Wu, and S. Gao, “Opportunities and challenges of vehicle-to-home, vehicle-to-vehicle, and vehicle-to-grid technologies,” Proc. IEEE Proc., vol. 101, no. 11, pp. 2409-2427, Nov. 2013.
[109] H. Turker and S. Bacha, “Optimal minimization of plug-in electric vehicle charging cost with cehicle-to-home and vehicle-to-grid concepts,” IEEE Trans. Veh. Technol., vol. 67, no. 11, pp. 10281-10292, Nov. 2018.
[110] H. N. de Melo, J. P. F. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A controllable bidirectional battery charger for electric vehicles with vehicle-to-grid capability,” IEEE Trans. Veh. Technol., vol. 67, no. 1, pp. 114-123, Jan. 2018.
[111] N. Erdogan, F. Erden, and M. Kisacikoglu, “A fast and efficient coordinated vehicle-to-grid discharging control scheme for peak shaving in power distribution system,” J. Modern Power Syst. Clean Energy, vol. 6, no. 3, pp. 555-566, May 2018.
[112] M. A. Masrur, A. G. Skowronska, J. Hancock, S. W. Kolhoff, D. Z. McGrew, J. C. Vandiver, and J. Gatherer, “Military-based vehicle-to-grid and vehicle-to-vehicle microgrid-system architecture and implementation,” IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 157-171, Mar. 2018.
[113] S. A. Amamra and J. Marco, “Vehicle-to-grid aggregator to support power grid and reduce electric vehicle charging cost,” IEEE Access, vol. 7, pp. 178528-178538, 2019.
[114] M. Moschella, M. A. A. Murad, E. Crisostomi, and F. Milano, “Decentralized charging of plug-in electric vehicles and impact on transmission system dynamics,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 1772-1781, Mar. 2021.
[115] S. Das, P. Acharjee and A. Bhattacharya, “Charging scheduling of electric vehicle incorporating grid-to-vehicle and vehicle-to-grid technology considering in smart grid,” IEEE Trans. Ind. Appl., vol. 57, no. 2, pp. 1688-1702, Mar.-Apr. 2021.
G. V2V Operations
[116] T. J. C. Sousa, V. Monteiro, J. C. A. Fernandes, C. Couto, A. A. N. Meléndez, and J. L. Afonso, “New perspectives for vehicle-to-vehicle (V2V) power transfer,” in Proc. 44th Annu. Conf. IEEE Ind. Electron. Soc., pp. 5183-5188, 2018.
[117] S. Wang et al., “Multifunction capability of SiC bidirectional portable chargers for electric vehicles,” IEEE Trans. Emerg. Sel. Topics in Power Electron., vol. 9, no. 5, pp. 6184-6195, Oct. 2021.
[118] E. Ucer et al., “Analysis, design, and comparison of V2V chargers for flexible grid integration,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4143-4154, July-Aug. 2021.
[119] M. Shurrab, S. Singh, H. Otrok, R. Mizouni, V. Khadkikar, and H. Zeineldin, “An efficient vehicle-to-vehicle (V2V) energy sharing framework,” IEEE Internet Things J., vol. 9, no. 7, pp. 5315-5328, April, 2022.
[120] U. B S, V. Khadkikar, H. H. Zeineldin, S. Singh, H. Otrok, and R. Mizouni, “Direct electric vehicle to vehicle (V2V) power transfer using on-board drivetrain and motor windings,” IEEE Trans. Ind. Electron., vol. 69, no. 11, pp. 10765-10775, Nov. 2022.
[121] S. Liu, Q. Ni, Y. Cao, J. Cui, D. Tian, and Y. Zhuang, “A reservation-based vehicle-to- vehicle charging service under constraint of parking duration,” IEEE Syst. J., vol. 17, no. 1, pp. 176-187, Mar. 2023.
[122] A. Shafiqurrahman, B. S. Umesh, N. A. Sayari, and V. Khadkikar, “Electric vehicle-to- vehicle energy transfer using on-board converters,” IEEE Trans. Transport. Electrific., vol. 9, no. 1, pp. 1263-1272, Mar. 2023.
H. M2V/V2M Operations
[123] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, Jan. 2016.
[124] D. Qin, Q. Sun, R. Wang, D. Ma, and M. Liu, “Adaptive bidirectional droop control for electric vehicles parking with vehicle-to-grid service in microgrid,” CSEE J. Power Energy Syst., vol. 6, no. 4, pp. 793-805, Dec. 2020.
[125] M. S. Rahman, M. J. Hossain, J. Lu, F. H. M. Rafi, and S. Mishra, “A vehicle-to-microgrid framework with optimization-incorporated distributed EV coordination for a commercial neighborhood,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1788-1798, Mar. 2020.
[126] K. Lai and L. Zhang, “Sizing and siting of energy storage systems in a military-based vehicle-to-grid microgrid,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 1909-1919, May-June 2021.
[127] S. Li, P. Zhao, C. Gu, J. Li, S. Cheng, and M. Xu, “Battery protective electric vehicle charging management in renewable energy system,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1312-1321, Feb. 2023.
I. Others
[128] V. K. Ganissetti, “Development of an electric vehicle synchronous reluctance motor drive and its interconnected operations to grid and microgrid,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2021.