簡易檢索 / 詳目顯示

研究生: 蘇敬文
Su, Ching-Wen
論文名稱: 有機薄膜電晶體全溶液製程開發與介面特性之研究
Interfacial Properties Study and Development of All-Solution-Processing Organic Thin Film Transistors
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 陶雨臺
許千樹
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 有機薄膜電晶體
外文關鍵詞: PEDOT:PSS, TESADT
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在分子電子元件領域中,包括:有機場效電晶體領域,導電高分子聚合物poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)經常被作為軟性電極(soft electrode)的材料。本論文我們將以全溶液製程(all solution process)來製作以PEDOT:PSS為電極之有機薄膜電晶體元件並深入探討有機半導體分子triethylsilylethynyl anthradithiophene (TESADT)與導電高分子聚合物間介面之特性。於此,我們感興趣之議題包括TESADT/PEDOT:PSS介面間分子能階狀態、分子排列位向及成長形貌。我們所採用的表面分析技術包含紫外光光電子能譜、X光光電子能譜、近緣X光吸收細微結構光譜及原子力顯微鏡。
    在實際製作之有機薄膜電晶體元件效能方面,底接觸式的元件,其電洞遷移率為0.053 cm2/Vs,門檻電壓為6.4 V,開關電流比為8.3 × 105,而頂接觸式的元件,其電洞遷移率為0.035 cm2/Vs,門檻電壓為1.6 V,開關電流比為2.2 × 105。此電性結果與以Au為電極之電晶體元件相比較,以G-PEDOT:PSS為電極之元件其電洞遷移率普遍優於以Au為電極之元件,主要原因為TESADT會進入G-PEDOT:PSS之寬鬆結構內,形成一厚度約10 nm的混雜區域,且TESADT會靠近PSS鏈,PSS為電洞施者,而TESADT為電洞接受者,電洞摻雜使得電洞注射能障減小,約0.48 eV,元件具有較佳的電洞注射效率。而受汙染之Au/TESADT介面的電洞注射能障為0.88 eV,元件之電洞注射效率較差。


    Conducting polymer of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is frequently used as soft electrode materials in molecular electronics including organic field effect transistor (OFET). In this thesis, we will report on the fabrication of all-solution-processed organic thin film transistors consisted of PEDOT:PSS polymer and a semiconducting material of triethylsilylethynyl anthradithiophene (TESADT). All the relevant interfacial properties between polymer electrodes and TESADT will also be investigated. The issues of particular interest are energy level alignment, thin film morphology and the molecular alignment of TESADT molecules on PEDOT:PSS substrate. The techniques in use include Ultraviolet Photoelectron Spectroscopy (UPS), X-ray Photoelectron Spectroscopy (XPS), Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy and Atomic Force Microscope (AFM).
    The bottom-contact OFET devices were fabricated, and the average OFET mobility reaches 0.053 cm2V-1S-1, with a threshold voltage at 6.4 V and an on/ off current ratio of 8.3 × 105. The top-contact OFET devices were also fabricated, and the average OFET mobility achieved is 0.035 cm2V-1S-1, with a threshold voltage at 1.6 V and an on/ off current ratio of 2.2 × 105. Comparing these results with the device performances of OFET consisted of Au electrodes, the bottom contact PEDOT:PSS based devices have better performance than Au based devices. A smaller hole injection barrier of 0.48 eV and a better injection efficiency were found for the TESADT/PEDOT:PSS interface which belong to an ohmic contact resulting from the diffusion of TESADT molecules into the structure of PEDOT:PSS. However, a higher hole injection barrier of 0.88 eV and a worse injection efficiency were found for the TESADT/Au interface which belong to a Schottky contact.

    第一章 序論 1 1-1 有機薄膜電晶體簡介 1 1-2 電極材料簡介 3 1-3 有機薄膜電晶體溶液製程簡介 10 1-3-1 光蝕刻微影技術 10 1-3-2 非光蝕刻微影技術 12 1-4 研究動機與目的 15 第二章 實驗技術背景與原理簡述 16 2-1 光電子能譜 (Photoemission spectroscopy) 16 2-1-1 X光光電子能譜 (XPS) 17 2-1-2 紫外光光電子能譜 (UPS) 20 2-2 半導體/金屬介面之能帶彎曲(band bending)現象 23 2-3 近緣X光吸收細微結構光譜 (NEXAFS) 24 2-3-1 NEXAFS原理背景 24 2-3-2 NEXAFS數據處理背景 30 2-4 原子力顯微鏡 (AFM) 33 2-5 有機薄膜電晶體的工作原理 35 第三章 實驗藥品、儀器設備與實驗步驟 40 3-1 實驗藥品 40 3-2 實驗儀器 42 3-3 有機薄膜電晶體製作、量測與數據處理 43 3-3-1 SU-8光阻微通道矽晶片與PDMS圖章之製作 43 3-3-2 Piranha溶液清洗矽晶片 45 3-3-3 成長自我組裝單層膜 46 3-3-4 製作G-PEDOT:PSS和Au 電極 47 3-3-5 旋轉塗佈有機半導體材料 50 3-3-6 有機薄膜電晶體元件電性量測與數據處理 50 3-4超高真空(UHV)表面分析腔體系統介紹 52 3-4-1表面分析腔體系統 52 3-4-2超高真空的達成 53 3-5 XPS實驗方式與數據處理 55 3-6 UPS實驗方式與數據處理 56 3-7 NEXAFS實驗方式與數據處理 57 3-8 AFM實驗方式 59 第四章 實驗結果與討論 60 4-1 G-PEDOT:PSS電極製作 60 4-1-1 G-PEDOT:PSS電極製作條件最佳化 61 4-1-2 G-PEDOT:PSS電極製作結果 71 4-2 Ultraviolet and X-ray photoemission spectroscopy (UPS & XPS) 74 4-2-1 TESADT、G-PEDOT:PSS、Au薄膜厚度量測 75 4-2-2 UPS及XPS能譜中能量校正方法 76 4-2-3 TESADT/G-PEDOT:PSS/SiO2之UPS能譜 78 4-2-4 TESADT/Au/SiO2之UPS能譜 79 4-2-5 TESADT/G-PEDOT:PSS/SiO2之XPS能譜 81 4-2-6 TESADT/Au/SiO2之XPS能譜 84 4-2-7 TESADT/G-PEDOT:PSS/SiO2及TESADT/Au/SiO2 能階圖 88 4-3 Near Edge X-ray Absorption Fine Structure (NEXAFS) 90 4-3-1 TESADT/G-PEDOT:PSS/SiO2之NEXAFS能譜 90 4-3-2 TESADT/Au/SiO2之NEXAFS能譜 95 4-3-3 NEXAFS結果整理 99 4-4 Atomic Force microscopy (AFM)影像 101 4-4-1 TESADT/G-PEDOT:PSS/SiO2及TESADT/Au/SiO2 AFM影像 101 4-4-2 TESADT/ Au、G-PEDOT:PSS、4-PBTS-SiO2的AFM影像 103 4-5 有機薄膜電晶體電性表現量測結果與討論 105 第五章 結論 115 第六章 參考資料 117

    (1)Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.
    (2)Gill, W. D. J. Appl. Phys. 1972, 43, 5033.
    (3)陳金鑫 OLED有機電激發光材料與元件; 五南圖書出版股份有限公司: 台北市, 2005.
    (4)Di, C.-a.; Liu, Y.; Yu, G.; Zhu, D. Acc. Chem. Res. 2009, 42, 1573.
    (5)Rhee, S.-W.; Yun, D.-J. J. Mater. Chem. 2008, 18, 5437.
    (6)Hirose, T.; Nagase, T.; Kobayashi, T.; Ueda, R.; Otomo, A.; Naito, H. Appl. Phys. Lett. 2010, 97, 083301.
    (7)Dickey, K. C.; Smith, T. J.; Stevenson, K. J.; Subramanian, S.; Anthony, J. E.; Loo, Y.-L. Chem. Mater. 2007, 19, 5210.
    (8)Chen, W.; Chen, S.; Huang, H.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Appl. Phys. Lett. 2008, 92, 063308.
    (9)Ihm, K.; Kim, B.; Kang, T.-H.; Kim, K.-J.; Joo, M. H.; Kim, T. H.; Yoon, S. S.; Chung, S. Appl. Phys. Lett. 2006, 89, 033504.
    (10)Zangmeister, C. D.; Picraux, L. B.; van Zee, R. D.; Yao, Y.; Tour, J. M. Chem. Phys. Lett. 2007, 442, 390.
    (11)Laibinis, P. E.; Hickman, J. J.; Wrighton, M. S.; Whitesides, G. M. Science 1989, 245, 845.
    (12)Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. J. Am. Chem. Soc. 2010, 132, 8180.
    (13)Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; van der Gon, A. W. D.; Louwet, F.; Fahlman, M.; Groenendaal, L.; De Schryver, F.; Salaneck, W. R. J. Polym. Sci., Part B: Polym. Phys. 2003, 41, 2561.
    (14)Kim, W. H.; Makinen, A. J.; Nikolov, N.; Shashidhar, R.; Kim, H.; Kafafi, Z. H. Appl. Phys. Lett. 2002, 80, 3844.
    (15)Jönsson, S. K. M.; Birgerson, J.; Crispin, X.; Greczynski, G.; Osikowicz, W.; Denier van der Gon, A. W.; Salaneck, W. R.; Fahlman, M. Synth. Met. 2003, 139, 1.
    (16)Lee, M.-W.; Lee, M.-Y.; Choi, J.-C.; Park, J.-S.; Song, C.-K. Org. Electron. 2010, 11, 854.
    (17)Li, D.; Guo, L. J. Appl. Phys. Lett. 2006, 88, 063513.
    (18)Hu, P.; Kun, L.; Weilin, C.; Li, P.; Daping, C.; William, O. N. J. Micromech. Microeng. 2010, 20, 075032.
    (19)Sholin, V.; Carter, S. A.; Street, R. A.; Arias, A. C. Appl. Phys. Lett. 2008, 92, 063307.
    (20)Wang, S.-J.; Park, H.-H. J. Electroceram. 2007, 18, 161.
    (21)Becerril, H. c. A.; Stoltenberg, R. M.; Tang, M. L.; Roberts, M. E.; Liu, Z.; Chen, Y.; Kim, D. H.; Lee, B.-L.; Lee, S.; Bao, Z. ACS Nano 2010, 4, 6343.
    (22)Petraki, F.; Kennou, S.; Nespurek, S. J. Appl. Phys. 2008, 103, 033710.
    (23)Wen, Y.; Liu, Y.; Guo, Y.; Yu, G.; Hu, W. Chem. Rev. 2011, 111, 3358.
    (24)Xia, Y. N.; Whitesides, G. M. Angew. Chem.-Int. Edit. 1998, 37, 551.
    (25)Surface Analysis: The Principle Techniques; Vickerman, J. C., Ed.; John Wiley & Sons: New York, 1997.
    (26)Kolasinski, K. W. Surface science: Foundations of Catalysis and Nanoscience John Wiley & Sons, Ltd: New York, 2008.
    (27)Streetman, B. G.; Banerjee, S. K. Solid State Electronic Devices; Pearson Prentice Hall: New Jersey, 2005.
    (28)Stöhr, J. NEXAFS Spectroscpy; Springer-Verlag: Berlin, 1991.
    (29)Knupfer, M.; Peisert, H. Phys. Status Solidi A-Appl. Mat. 2004, 201, 1055.
    (30)NISE, http://www.nisenet.org/.
    (31)Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436.
    (32)Sui, G.; Wang, J.; Lee, C.-C.; Lu, W.; Lee, S. P.; Leyton, J. V.; Wu, A. M.; Tseng, H.-R. Anal. Chem. 2006, 78, 5543.
    (33)Lee, W. H.; Kim, D. H.; Cho, J. H.; Jang, Y.; Lim, J. A.; Kwak, D.; Cho, K. Appl. Phys. Lett. 2007, 91, 092105.
    (34)Takakuwa, A.; Ikawa, M.; Fujita, M.; Yase, K. Jpn. J. Appl. Phys. 2007, 46, 5960.
    (35)Li, D.; Guo, L. J. J. Phys. D: Appl. Phys. 2008, 41, 105115.
    (36)Oláh, A.; Hillborg, H.; Vancso, G. J. Appl. Surf. Sci. 2005, 239, 410.
    (37)Song, X.; Wang, L.; Fan, Q.; Wu, Y.; Wang, H.; Liu, C.; Liu, N.; Zhu, J.; Qi, D.; Gao, X.; Wee, A. T. S. Appl. Phys. Lett. 2010, 97, 032106.
    (38)Nambu, A.; Kondoh, H.; Nakai, I.; Amemiya, K.; Ohta, T. Surf. Sci. 2003, 530, 101.
    (39)Yuan, Q.; Mannsfeld, S. C. B.; Tang, M. L.; Toney, M. F.; Lüning, J.; Bao, Z. J. Am. Chem. Soc. 2008, 130, 3502.
    (40)Wang, C.-H.; Yang, Y.-W.; Fan, L.-J.; Su, J.-W.; Chan, S.-W.; Chen, M.-C. AIP Conf. Proc. 2010, 1234, 469.
    (41)Koch, N.; Kahn, A.; Ghijsen, J.; Pireaux, J.-J.; Schwartz, J.; Johnson, R. L.; Elschner, A. Appl. Phys. Lett. 2003, 82, 70.
    (42)Zotti, G.; Zecchin, S.; Schiavon, G.; Louwet, F.; Groenendaal, L.; Crispin, X.; Osikowicz, W.; Salaneck, W.; Fahlman, M. Macromolecules 2003, 36, 3337.
    (43)Peisert, H.; Knupfer, M.; Zhang, F.; Petr, A.; Dunsch, L.; Fink, J. Appl. Phys. Lett. 2003, 83, 3930.
    (44)Casu, M. B.; Cosseddu, P.; Batchelor, D.; Bonfiglio, A.; Umbach, E. J. Chem. Phys. 2008, 128, 014705.
    (45)Auml; Fer, D.; Ruppel, L.; Witte, G. Phys. Rev. B 2007, 75, 085309.
    (46)Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.-C.; Jackson, T. N. J. Am. Chem. Soc. 2005, 127, 4986.
    (47)Yu, C.-H.; Lei, T.-F.; Liao, J.-L.; Yan, J.-Y.; Ho, J.-C. J. Disp. Technol. 2009, 5, 198.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE