研究生: |
王政雲 Wang Jeng Yun |
---|---|
論文名稱: |
犯罪點資料之空間分布的正規化估計及關聯性分析 Regularized Spatial Point Pattern Analysis with Application to Crime Data |
指導教授: |
徐南蓉
Hsu Nan-Jung |
口試委員: |
張雅梅
Chang Ya Mei 蔡恆修 Tsai Heng Hsiu |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 異質卜瓦松點過程 、強度函數 、正規化函數 |
外文關鍵詞: | Inhomogeneous poisson point process, intensity function, regularization function |
相關次數: | 點閱:66 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用點過程建模的方式,探討犯罪事件的發生地點在空間分布的特徵,並研究不同型態的犯罪事件發生模式在空間上是否有關聯性,及量化其關聯強度。本研究利用2003年至2015年5月3日舊金山地區的犯罪資料為實例,採用異質卜瓦松點過程來描述犯罪事件發生的隨機機制。由於各類犯罪發生地點有明顯的空間特徵(如集中於人口密集和都市開發程度較高的地區),因此採用thin-plate splines描述 intensity function在二維地理空間上的整體趨勢,另以迴歸關係式連結其他犯罪類型在各地點之局部發生頻率的訊息,以量化不同犯罪發生在空間上的關聯性。在參數估計上,我們採用MLE估計參數,並同時引入兩項regularization以調控模式的選取。針對空間上的整體趨勢,採用L2 regularization以限制intensity在空間變化的平滑度,但採用L1 regularization對不同犯罪類型之個別關聯性做具體的變數挑選,最後依據推論的結果建構犯罪發生頻率的預測平面。
This thesis considered an inhomogeneous Poisson process to characterize the spatial point patterns for the crime events in San Francisco area. The data consist of 39 crimes in Year 2008. We study the global spatial patterns of intensity among different crimes and explore possible associations between them. For modeling the intensity functions for all types of crime simultaneously, we use the thin-plate splines to describe the overall intensity baseline function to account for the global and common spatial patterns among crimes. Beyond the global pattern, an extra regression form in terms of the standardized local crime scores are added to the intensity model to capture the specific effects from other crimes. For inference, two types of maximum likelihood estimation (MLE) are implemented: one is based on the detail point data information and the other is based on a coarser block (quadrant) data. Regularization techniques are further incorporated into the likelihood function to smooth the global intensity patterns and to select important association relationship among crimes. Empirical analysis shows a high intensity global patterns centered around the downtown area in San Francisco. It is also found that regularized MLE based on the point data has a higher estimation precision and tends to select a more parsimonious model.
Baddeley, A. , Turner, R. (2000). Practical maximum pseudolikelihood for spatial point
patterns. Australian and New Zealand Journal of Statistics, 42, 283–322.
Baddeley, A. J. , Turner, R. (2005). Spatstat: An R package for analyzing spatial point
patterns. Journal of Statistical Software, 12, 1–42.
Diggle, P. J. (2003). Statistical Analysis of Spatial Point Patterns, 2nd ed., Arnold, London.
Møller, J. & Waagepetersen, R. P. (2004). Statistical Inference and Simulation for Spatial
Point Processes, Chapman and Hall, New York.
Thurman, A. L. , Zhu, J. (2014). Variable selection for spatial Poisson point processes via
a regularization method. Statistical Methodology, 17, 113–125.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58, 267–288.
Waagepetersen, R. , Guan,Y. , Jalilian, A , Mateu, J. (2016). Analysis of multispecies point
pattern by using multivariate log-Gaussian Cox process.
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association, 101, 1418–1429
舊金山地區的犯罪資料
網站來源: https://www.kaggle.com/c/sf-crime.