研究生: |
王 晨 Wang, Chen |
---|---|
論文名稱: |
在大型強子對撞機上探討類軸子粒子及規範玻色子之耦合使用 Z 玻色子的共同產生過程 Probing the Gauge-boson Couplings of Axion-like Particle with Associated Production Process of Z Boson at the LHC |
指導教授: |
張敬民
Cheung, Kingman |
口試委員: |
曾柏彥
Tseng, Po-Yan 陳傳仁 Chen, Chuan-Ren |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 34 |
中文關鍵詞: | 粒子物理 、類軸子粒子 、大強子對撞機 |
外文關鍵詞: | Particle Physics, ALP, LHC |
相關次數: | 點閱:32 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討了類軸子粒子與電弱規範波色子的耦合常數$g_{aZZ}$和$g_{aZ\gamma}$。在質心能量14兆電子伏特和目前運行(高光度大型強子對撞機)總光度300逆飛靶(3000逆飛靶)情況下,相關產生過程$pp \to Za \to l^+l^-\gamma \gamma$被考慮。我們展示了在類軸子粒子質量1吉電子伏特到100吉電子伏特區間,兩個耦合係數的靈敏度曲線都比現有約束有著一個數量級的進步。總而言之,本研究強調了此被調查的通道對於限制在未來大型強子對撞機中類軸子粒子耦合的重要性,並提供了對未來類軸子粒子探測實驗的重要資訊。
This thesis explores the coupling constants, $g_{aZZ}$ and $g_{aZ\gamma}$, of an axion-like particle (ALP) with the electroweak gauge bosons. With center-of-mass energy $\sqrt{s}=14~\text{TeV}$ and integrated luminosities $\mathcal{L}=300~\text{fb}^{-1}$ ($3000~\text{fb}^{-1}$), current run (High-Luminosity LHC), the associated production process $pp \to Za \to l^+l^-\gamma \gamma$ is considered. We show the better sensitivity curves than current limit with one order improvement for both couplings in the mass range of $M_a=1~\text{GeV}-100~\text{GeV}$. As a conclusion, this work highlights how important the examined channels are for limiting the ALP couplings at the future LHC and provides important information for upcoming ALP detection experiments.
[1] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of Instantons. Phys. Rev. Lett., 38:1440–1443, 1977.
[2] R. D. Peccei and Helen R. Quinn. Constraints Imposed by CP Conservation in the Presence of Instantons. Phys. Rev. D, 16:1791–1797, 1977.
[3] Steven Weinberg. A New Light Boson? Phys. Rev. Lett., 40:223–226, 1978.
[4] Frank Wilczek. Problem of Strong P and T Invariance in the Presence of Instantons. Phys. Rev. Lett., 40:279–282, 1978.
[5] John Preskill, Mark B. Wise, and Frank Wilczek. Cosmology of the Invisible Axion. Phys. Lett. B, 120:127–132, 1983.
[6] L. F. Abbott and P. Sikivie. A Cosmological Bound on the Invisible Axion. Phys. Lett. B, 120:133–136, 1983.
[7] Michael Dine and Willy Fischler. The Not So Harmless Axion. Phys. Lett. B, 120:137–141, 1983.
[8] Kingman Cheung, Wanyon Hsiao, C. J. Ouseph, and Chen Wang. Probing the Gauge-boson Couplings of Axion-like Particle at the LHC and High-Luminosity LHC. 2 2024.
[9] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz. ALPs Effective Field Theory and Collider Signatures. Eur. Phys. J. C, 77(8):572, 2017.
[10] Howard Georgi, David B. Kaplan, and Lisa Randall. Manifesting the Invisible Axion at Low-energies. Phys. Lett. B, 169:73–78, 1986.
[11] Jie Ren, Daohan Wang, Lei Wu, Jin Min Yang, and Mengchao Zhang. Detecting an axion-like particle with machine learning at the LHC. JHEP, 11:138, 2021.
[12] Kingman Cheung and C. J. Ouseph. Axionlike particle search at Higgs factories. Phys. Rev. D, 108(3):035003, 2023.
[13] O. Adriani et al. Isolated hard photon emission in hadronic Z0 decays. Phys. Lett. B, 292:472–484, 1992.
[14] Nathaniel Craig, Anson Hook, and Skyler Kasko. The Photophobic ALP. JHEP, 09:028, 2018.
[15] Armen Tumasyan et al. Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at √s = 13 TeV. JHEP, 04:087, 2022.
[16] Sonia Carra, Vincent Goumarre, Ruchi Gupta, Sarah Heim, Beate Heinemann, Jan Kuechler, Federico Meloni, Pablo Quilez, and Yee-Chinn Yap. Constraining off-shell production of axionlike particles with Zγ and WW differential cross-section measurements. Phys. Rev. D, 104(9):092005, 2021.
[17] Xabier Cid Vidal, Alberto Mariotti, Diego Redigolo, Filippo Sala, and Kohsaku Tobioka. New Axion Searches at Flavor Factories. JHEP, 01:113, 2019. [Erratum: JHEP 06, 141 (2020)].
[18] Alberto Mariotti, Diego Redigolo, Filippo Sala, and Kohsaku Tobioka. New LHC bound on low-mass diphoton resonances. Phys. Lett. B, 783:13–18, 2018.
[19] Karabo Mosala, Pramod Sharma, Mukesh Kumar, and Ashok Goyal. Axion-like particles at future e−p collider. Eur. Phys. J. C, 84(1):44, 2024.
[20] Masashi Aiko and Motoi Endo. Electroweak precision test of axion-like particles. JHEP, 05:147, 2023.
[21] Masashi Aiko, Motoi Endo, and Kåre Fridell. Heavy photophobic ALP at the LHC. 1 2024.
[22] Jia Liu, Yan Luo, and Muyuan Song. Investigation of the concurrent effects of ALP-photon and ALP-electron couplings in Collider and Beam Dump Searches. JHEP, 09:104, 2023.
[23] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz. ALPs Effective Field Theory and Collider Signatures. Eur. Phys. J. C, 77(8):572, 2017.
[24] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. MadGraph 5 : Going Beyond. JHEP, 06:128, 2011.
[25] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.
[26] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, and M. Selvaggi. DELPHES 3, A modular framework for fast simulation of a generic collider experiment. JHEP, 02:057, 2014.
[27] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual. Eur. Phys. J. C, 72:1896, 2012.
[28] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 04:063, 2008.
[29] Jesse Thaler and Ken Van Tilburg. Identifying Boosted Objects with Nsubjettiness. JHEP, 03:015, 2011.
[30] Study of the double Higgs production channel H(→ b¯b)H(→ γγ) with the ATLAS experiment at the HL-LHC. 1 2017.
[31] Jessie Shelton. Jet Substructure. In Theoretical Advanced Study Institute in Elementary Particle Physics: Searching for New Physics at Small and Large Scales, pages 303–340, 2013.
[32] Kingman Cheung and C. J. Ouseph. Axionlike particle search at Higgs factories. Phys. Rev. D, 108(3):035003, 2023.
[33] Abdesslam Arhrib, Kingman Cheung, and Chih-Ting Lu. Same-sign charged Higgs boson pair production in bosonic decay channels at the HL-LHC and HE-LHC. Phys. Rev. D, 102(9):095026, 2020.