研究生: |
謝承孝 Hsieh, Chen-Hsiao |
---|---|
論文名稱: |
探討氧氣電漿處理對二硫化鉬與二硒化鉬表面形貌與光電特性之影響 Surface morphology, characterizations and optoelectronic properties of MoS2 and MoSe2 with O2 plasma treatments |
指導教授: |
呂明諺
Lu, Ming-Yen |
口試委員: |
吳文偉
Wu, Wen-Wei 呂明霈 Lu, Ming-Pei |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 二硫化鉬 、二硒化鉬 、氧氣電漿表面處理 、電漿表面清潔 、電極接觸工程 |
外文關鍵詞: | molybdenum disulfide, molybdenum diselenide, oxygen plasma treatment, plasma surface cleaning, contact engineering |
相關次數: | 點閱:60 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備二硫化鉬與二硒化鉬材料,以氧氣電漿轟擊材料表面,再分別製作成場效電晶體元件,同樣以氧氣電漿轟擊元件通道或電極底下接觸之材料,探討其表面形貌變化與光電特性改變。研究分為以下部分討論材料之變化:表面形貌、元素組成與光電特性。
在第一部分研究中,會以原子力顯微鏡、SEM與TEM觀察轉移後與氧氣電漿轟擊後,二硫化鉬與二硒化鉬形貌改變,同時利用拉曼與PL確認材料的層數。在表面形貌變化部分,使用氧電漿10瓦,3, 6和9秒的時間處理材料,發現材料在3秒時有最小的表面粗糙度,進行至6秒與9秒後,材料會開始出現破損和奈米捲現象。
第二部分元素組成中,以拉曼分析材料特徵峰會隨時間降低,6秒以後測量不到二硫化鉬、二硒化鉬與三氧化鉬的特徵峰。從XPS分析可以得知,隨著氧電漿轟擊時間增長,Mo4+的峰值會逐步轉換成Mo6+;從STEM影像分析可以瞭解在氧電漿處理後,雖然材料有破損與裂痕,但還可以確認到二硫化鉬與二硒化鉬晶格,表面也沒有分析到三氧化鉬的繞射點與拉曼訊號。
第三部分光電特性方面,分別量測:轉移後未處理二維材料元件、氧電漿轟擊通道元件、電漿預先處理電極底部的接觸材料。從電性結果可以確認氧電漿轟擊後會造成材料缺陷增加,氧電漿轟擊通道元件的光電流與光響應度會隨著處理時間增加而下降;預處理會有清潔效果使電阻率下降,但如果元件製作殘留有機物少則電阻率不會有顯著減少,而較長的轟擊時間反而會使電阻率升高。
透過實驗分析證實,以氧氣電漿轟擊二硫化鉬與二硒化鉬材料表面,會造成缺陷增加甚至形成奈米捲導致材料破損,使材料導電度下降,同時改變開關電流值與閾值電壓。
In this study, molybdenum disulfide and molybdenum diselenide materials were synthesized. The surfaces of these materials underwent treatment with oxygen plasma, followed by the fabrication of field-effect transistors. Subsequently, the channels or materials under the electrodes were bombarded to investigate surface morphology. The study is structured into three sections focusing on the changing of the materials: surface morphology, composition, and photoelectrical properties.
In the first part of the study, use Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to observe the morphological alterations of molybdenum disulfide and molybdenum diselenide before and after exposure to oxygen plasma treatments. Additionally, Raman spectroscopy (Raman) and Photoluminescence (PL) techniques will be utilized to verify the number of layers present. The surface morphology was modified using oxygen plasma treatment at power levels of 10 watts for durations of 3, 6, and 9 seconds. It was observed that the material exhibited the least surface roughness at 3 seconds. After 6 and 9 seconds, the material underwent structural changes leading to the formation of nanorolls.
In the latter part of the elemental composition analysis, the characteristic peaks of the materials analyzed by Raman decrease over time. Specifically, the peaks associated molybdenum disulfide, molybdenum diselenide, and molybdenum trioxide are no longer detectable after 6 seconds. Through X-ray photoelectron spectroscopy (XPS) analysis, it is evident that with an increase in the duration of oxygen plasma treatment , the intensity of the Mo4+ will gradually transitions to Mo6+. Despite the damage incurred by the materials, the crystal lattice of molybdenum disulfide and molybdenum diselenide remains observable. Notably, no diffraction pattern corresponding to molybdenum trioxide was discernible on the surface.
In the third section, the photoelectrical characteristics were assessed for the following samples: the untreated two-dimensional material, devices channel after oxygen plasma treatments, and the treatments on materials under electrodes. It was observed that the oxygen plasma treatment led to an increase in defects. Furthermore, currents and photoresponsivity of devices subjected to channel treatments decreased with longer processing time. Resistivity (ρ) also decreases slightly after the treatments on materials under electrodes (plasma cleaning).
Experimental analysis has verified that bombarding the surface of molybdenum disulfide and molybdenum diselenide materials with oxygen plasma results in the augmentation of defects and even the formation of nanorolls, ultimately resulting in material degradation.
1. Davis, J.A., et al., Interconnect limits on gigascale integration (GSI) in the 21st century. Proceedings of the IEEE, 2001. 89(3): p. 305-324.
2. Tran, T.T., Synthesis of germanium-tin alloys by ion implantation and pulsed laser melting: Towards a group IV direct band gap semiconductor. 2017, The Australian National University (Australia).
3. Pedreira, O.V., V.V. Gonzalez, and Z. Tőkei. Metal reliability mechanisms in Ruthenium interconnects. in 2020 IEEE International Reliability Physics Symposium (IRPS). 2020. IEEE.
4. Lattuada, M. and T.A. Hatton, Synthesis, properties and applications of Janus nanoparticles. Nano Today, 2011. 6(3): p. 286-308.
5. Wagner, S., 2D materials for piezoresistive strain gauges and membrane based nanoelectromechanical systems. 2018, Dissertation, RWTH Aachen University, 2018.
6. Zhao, B., et al., 2D metallic transition‐metal dichalcogenides: structures, synthesis, properties, and applications. Advanced Functional Materials, 2021. 31(48): p. 2105132.
7. Aras, F.G., et al., A review on recent advances of chemical vapor deposition technique for monolayer transition metal dichalcogenides (MX₂: Mo, W; S, Se, Te). Materials Science in Semiconductor Processing, 2022. 148: p. 106829.
8. Li, Y., et al., Recent progress on the mechanical exfoliation of 2D transition metal dichalcogenides. Materials Research Express, 2022. 9(12): p. 122001.
9. Kuc, A., T. Heine, and A. Kis, Electronic properties of transition-metal dichalcogenides. MRS bulletin, 2015. 40(7): p. 577-584.
10. Das, S., et al., Transistors based on two-dimensional materials for future integrated circuits. Nature Electronics, 2021. 4(11): p. 786-799.
11. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS₂. Nature nanotechnology, 2013. 8(7): p. 497-501.
12. Sebastian, A., et al., Benchmarking monolayer MoS₂ and WS₂ field-effect transistors. Nature communications, 2021. 12(1): p. 693.
13. Lu, M.Y., Y.T. Chang, and H.J. Chen, Efficient Self‐Driven Photodetectors Featuring a Mixed‐Dimensional van der Waals Heterojunction Formed from a CdS Nanowire and a MoTe₂ Flake. Small, 2018. 14(40): p. 1802302.
14. Fu, Q., et al., 2D transition metal dichalcogenides: design, modulation, and challenges in electrocatalysis. Advanced Materials, 2021. 33(6): p. 1907818.
15. Zhang, J., et al., Vanadium-doped monolayer MoS₂ with tunable optical properties for field-effect transistors. ACS Applied Nano Materials, 2020. 4(1): p. 769-777.
16. Jeon, J., et al., Layer-controlled CVD growth of large-area two-dimensional MoS₂ films. Nanoscale, 2015. 7(5): p. 1688-1695.
17. Yin, H., et al., Substrate effects on the CVD growth of MoS₂ and WS₂. Journal of materials science, 2020. 55(3): p. 990-996.
18. Wang, X., et al., Chemical vapor deposition growth of crystalline monolayer MoSe₂. ACS nano, 2014. 8(5): p. 5125-5131.
19. Peng, G., et al., Controllable epitaxial growth of MoSe₂ bilayers with different stacking orders by reverse-flow chemical vapor deposition. ACS applied materials & interfaces, 2020. 12(20): p. 23347-23355.
20. Cullen, C.P., et al., Synthesis and thermal stability of TMD thin films: A comprehensive XPS and Raman study. arXiv preprint arXiv:2106.07366, 2021.
21. Pan, X., et al., Electrochemically Exfoliating MoS₂ into Atomically Thin Planar‐Stacking Through a Selective Lateral Reaction Pathway. Advanced functional materials, 2021. 31(8): p. 2007840.
22. Young, K.K., Short-channel effect in fully depleted SOI MOSFETs. IEEE Transactions on Electron Devices, 1989. 36(2): p. 399-402.
23. Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, 2016: p. 73-93.
24. Jariwala, D., et al., Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS nano, 2014. 8(2): p. 1102-1120.
25. Liu, H., et al., Van der Waals epitaxial growth of vertically stacked Sb₂Te3/MoS₂ p–n heterojunctions for high performance optoelectronics. Nano Energy, 2019. 59: p. 66-74.
26. Zhang, Y., et al., The evolution of MoS₂ properties under oxygen plasma treatment and its application in MoS₂ based devices. Journal of Materials Science: Materials in Electronics, 2019. 30: p. 18185-18190.
27. Liu, Y., et al., Layer-by-layer thinning of MoS₂ by plasma. ACS nano, 2013. 7(5): p. 4202-4209.
28. Chee, S.S. and M.H. Ham, Low‐Damaged Layer‐by‐Layer Etching of Large‐Area Molybdenum Disulfide Films via Mild Plasma Treatment. Advanced Materials Interfaces, 2020. 7(17): p. 2000762.
29. Mahlouji, R., et al., On the contact optimization of ALD-based MoS₂ FETs: correlation of processing conditions and interface chemistry with device electrical performance. ACS Applied Electronic Materials, 2021. 3(7): p. 3185-3199.
30. Bolshakov, P., et al., Contact engineering for dual-gate MoS₂ transistors using O₂ plasma exposure. ACS Applied Electronic Materials, 2019. 1(2): p. 210-219.
31. Kim, H.J., et al., Changes in the Raman spectra of monolayer MoS₂ upon thermal annealing. Journal of Raman Spectroscopy, 2018. 49(12): p. 1938-1944.
32. Buscema, M., et al., The effect of the substrate on the Raman and photoluminescence emission of single-layer MoS₂. Nano research, 2014. 7: p. 561-571.
33. Lee, Y.-H., et al., Synthesis of large-area MoS₂ atomic layers with chemical vapor deposition. arXiv preprint arXiv:1202.5458, 2012.
34. Maia, F.C.O., et al., Defect activated optical Raman modes in single layer MoSe₂. Nanotechnology, 2021. 32(46): p. 465302.
35. Shaw, J.C., et al., Chemical vapor deposition growth of monolayer MoSe₂ nanosheets. Nano Research, 2014. 7: p. 511-517.
36. Tonndorf, P., et al., Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂. Optics express, 2013. 21(4): p. 4908-4916.
37. Gołek, F., et al., AFM image artifacts. Applied surface science, 2014. 304: p. 11-19.
38. do Nascimento Barbosa, A., et al., Photoresponse of O₂ plasma treated WS₂ monolayers synthesized by chemical vapor deposition. Journal of Vacuum Science & Technology A, 2023. 41(2).
39. Huan, C., et al., Oxygen deficient α-MoO3 with enhanced adsorption and state-quenching of H₂O for gas sensing: a DFT study. Journal of Materials Chemistry C, 2022. 10(5): p. 1839-1849.
40. Fitri, D.A. and A. Purqon. Calculation study of electric properties on molybdenum disulfide by using density functional theory. in Journal of Physics: Conference Series. 2017. IOP Publishing.
41. Chu, X.S., et al., Formation of MoO3 and WO3 nanoscrolls from MoS₂ and WS₂ with atmospheric air plasma. Journal of Materials Chemistry C, 2017. 5(43): p. 11301-11309.
42. Guo, Y., et al., Electronic and optical properties of defective MoSe₂ repaired by halogen atoms from first-principles study. AIP Advances, 2019. 9(2).
43. Zou, B., et al., Optical Effect Modulation in Polarized Raman Spectroscopy of Transparent Layered α‐MoO3. Small, 2023. 19(19): p. 2206932.
44. Patel, S.K.S., et al., Synthesis of α-MoO3 nanofibers for enhanced field-emission properties. Adv. Mater. Lett., 2018. 9(8): p. 585-589.
45. Kondekar, N.P., et al., In situ XPS investigation of transformations at crystallographically oriented MoS₂ interfaces. ACS applied materials & interfaces, 2017. 9(37): p. 32394-32404.
46. Truong, Q.D., et al., Exfoliated MoS₂ and MoSe₂ Nanosheets by a supercritical fluid process for a hybrid Mg–Li-ion battery. Acs Omega, 2017. 2(5): p. 2360-2367.
47. Krbal, M., et al., 2D MoSe₂ structures prepared by atomic layer deposition. physica status solidi (RRL)–Rapid Research Letters, 2018. 12(5): p. 1800023.
48. Mao, C.-H., et al., Bifunctional Semimetal as a Plasmonic Resonator and Ohmic Contact for an Ultrasensitive MoS₂ Photodetector. ACS Photonics, 2023. 10(5): p. 1495-1503.
49. Shen, P.-C., et al., Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021. 593(7858): p. 211-217.
50. Kim, S., et al., High-mobility and low-power thin-film transistors based on multilayer MoS₂ crystals. Nature communications, 2012. 3(1): p. 1011.
51. Rani, A., et al. Electronic characteristics of MoSe₂ and MoTe₂ for nanoelectronic applications. in 2018 IEEE 13th Nanotechnology Materials and Devices Conference (NMDC). 2018. IEEE.
52. Wu, J.Y., et al., Broadband MoS₂ Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse. Advanced Materials, 2018. 30(7): p. 1705880.
53. Lee, H., et al., High-responsivity multilayer MoSe₂ phototransistors with fast response time. Scientific reports, 2018. 8(1): p. 11545.
54. Meng, X., et al., Giant superlinear power dependence of photocurrent based on layered Ta₂NiS5 photodetector. Advanced Science, 2023. 10(20): p. 2300413.
55. Xie, Y., et al., Ultrabroadband MoS₂ photodetector with spectral response from 445 to 2717 nm. Advanced Materials, 2017. 29(17): p. 1605972.
56. Silambarasan, K., et al., High spectral responsivity and specific detectivity of p-MoS₂/n-Si heterojunction photodetector for near-IR detection via facile solution process. Journal of Materials Science: Materials in Electronics, 2023. 34(28): p. 1975.
57. Wang, Z., et al., High-performance MoSe2 homojunction infrared photodetector. Infrared Physics & Technology, 2020. 106: p. 103272.
58. Asaithambi, A., et al., Generation of free carriers in MoSe₂ monolayers via energy transfer from CsPbBr3 nanocrystals. Advanced Optical Materials, 2022. 10(14): p. 2200638.
59. Li, J., et al., Transport properties of two-dimensional MoSe₂ and its application to high-performing all-2D photodetector. Nano Materials Science, 2024.
60. Neal, A.T., R. Pachter, and S. Mou, P-type conduction in two-dimensional MoS₂ via oxygen incorporation. Applied Physics Letters, 2017. 110(19).
61. Wu, J., et al., Plasma Treatment for Achieving Oxygen Substitution in Layered MoS₂ and the Room-Temperature Mid-Infrared (10 μm) Photoresponse. ACS Applied Materials & Interfaces, 2023. 15(50): p. 58556-58565.
62. Meng, L. and A. Yamada, Low-resistance orthorhombic MoO3-x thin film derived by two-step annealing. Thin Solid Films, 2018. 665: p. 179-183.
63. Leong, W.S., et al., Tuning the threshold voltage of MoS₂ field-effect transistors via surface treatment. Nanoscale, 2015. 7(24): p. 10823-10831.
64. Lin, Y.-J. and T.-H. Su, SiO₂ substrate passivation effects on the temperature-dependent electrical properties of MoS₂ prepared by the chemical vapor deposition method. Journal of Materials Science: Materials in Electronics, 2017. 28: p. 10106-10111.
65. Hamada, T., et al., Sheet resistance reduction of MoS₂ film using sputtering and chlorine plasma treatment followed by sulfur vapor annealing. IEEE Journal of the Electron Devices Society, 2021. 9: p. 278-285.