簡易檢索 / 詳目顯示

研究生: 章陽彬
Zhang, Yang-Bin
論文名稱: 人類肺部上皮細胞受體ACE2應對SARS-CoV-2之舊藥新用研究
Drug Repurposing for ACE2 gene in human lung epithelial cells against SARS-CoV-2
指導教授: 莊淳宇
Chuang, Chun-Yu
口試委員: 陳之碩
Chen, Chi-Shuo
劉耕谷
Liu, Keng-Ku
廖憶純
Liao, Yi-Chun
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 嚴重急性呼吸系統綜合征冠狀病毒2血管緊張素轉化酶2千金藤鹼阿奇黴素硫酸鋅微小核糖核酸
外文關鍵詞: SARS-CoV-2, ACE2, Cepharanthine, Azithromycin, ZnSO4, microRNA
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新型冠狀病毒肺炎(Corona Virus Disease 2019, COVID-19)在2019年爆發盛行於全球,由於造成肺炎和急性呼吸窘迫綜合症(acute respiratory distress syndrome, ARDS)以及急性肝、心和腎損傷等併發症,導致一開始致死率高達5%。嚴重急性呼吸綜合症冠狀病毒2 (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)表面刺突蛋白(spike protein)的受體結合區域(receptor binding domain, RBD),會與宿主細胞上血管緊張素轉化酶2 (angiotensin-converting enzyme 2, ACE2)結合進入細胞。千金藤鹼(Cepharanthine, CEP)為一種天然生物鹼,能抑制非洲綠猴腎Vero E6細胞共培養感染SARS-CoV之病毒活性。有鑒於SARS-CoV與SARS-CoV-2的基因序列具同源性,因此CEP可能是對抗SARS-CoV-2潛在藥物之一。阿奇黴素(Azithromycin, AZT)是臨床常用抗生素,硫酸鋅(ZnSO4)中的鋅離子(Zn+)亦能調節抵抗病毒引起之免疫反應和炎症反應。有研究指出微小核糖核酸(microRNA, miRNA)會通過阻止SARS-CoV-2複製及下調ACE2表達來減少病毒與ACE2結合造成感染。因此,本研究探究CEP、AZT與ZnSO4對於人類肺部細胞藉由miRNA調控改變ACE2表達及其與SARS-CoV-2致病和發炎相關基因表達情形之關聯性。
    本研究發現AZT/ZnSO4處理人類下呼吸道上皮非小細胞肺癌A549細胞及下呼吸道肺腺癌Calu-3細胞後能顯著下降ACE2表達,表示有助於降低SARS-CoV-2病毒透過結合人類肺部細胞ACE2進入宿主體內。雖然CEP不會改變ACE2表達,但CEP與AZT/ZnSO4處理可以顯著增加miR-421-5p與miR-200c-3p表達,顯著降低B0AT1、TMPRSS2、TLR8、IRAK1、NF-κB、AhR及F10表達,表示減少異源二聚體[ACE2:B0AT1]產生並降低SARS-CoV-2刺突蛋白經TMPRSS2切割後與ACE2結合進入體內,減少炎症因子TLR8與IRAK1來降低NF-κB表達,降低肺部黏蛋白表達和凝血因子F10表達,最終減緩肺部症狀。根據以上研究結果推論CEP與AZT/ZnSO4治療能透過調控miRNAs減少ACE2表達進而降低SARS-CoV-2進入體內造成感染,降低TLR8與IRAK1產生以減緩發炎,並且減少黏蛋白表達及血栓形成危害,進而減緩肺部症狀。


    The novel coronavirus disease 2019 (COVID-19) pandemic emerged globally in 2019, leading to severe complications such as pneumonia, acute respiratory distress syndrome (ARDS), acute liver, cardiac, and kidney injuries, initially resulting in a high fatality rate of up to 5%. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carrying the receptor binding domain (RBD) of the spike protein is capable of entering host cells by binding to angiotensin-converting enzyme 2 (ACE2). Cepharanthine (CEP), a natural alkaloid, has demonstrated the ability to inhibit SARS-CoV viral activity in Vero E6 cells that were co-cultured with SARS-CoV. Regarding the genetic sequence homology between SARS-CoV and SARS-CoV-2, CEP could be a potential agent against SARS-CoV-2. Azithromycin (AZT), a common clinical antibiotic, and zinc ions (Zn+) of ZnSO4 have been implicated in modulating immune and inflammatory responses against viral infections. It has been reported that microRNAs (miRNAs) can reduce viral infection by impeding SARS-CoV-2 replication and downregulating ACE2 expression. Therefore, this study investigated CEP and AZT/ ZnSO4 and their effects on the regulation of ACE2 expression through miRNA in human lung cells, as well as their association with the expression of genes related to SARS-CoV-2 pathogenesis and inflammation.
    This study found that AZT/ZnSO4 significantly reduced ACE2 expression in human lower respiratory tract epithelial non-small cell lung cancer A549 cells and lower respiratory tract lung adenocarcinoma Calu-3 cells. It showed that AZT/ZnSO4 could reduce the entry of SARS-CoV-2 virus into the host body by binding to ACE2 in human lung cells. While CEP did not alter ACE2 expression, treatment with CEP in conjunction with AZT/ZnSO4 significantly increased the expression of miR-421-5p and miR-200c-3p, and markedly decreased the expression of B0AT1, TMPRSS2, TLR8, IRAK1, NF-κB, AhR and F10. These results indicated a decrease in the formation of heterodimers [ACE2:B0AT1] and a diminished TMPRSS2 cleavage, resulting in reduced binding between the SARS-CoV-2 spike protein and ACE2 subsequently for lowering SARS-CoV-2 entry into the host cells. CEP and AZT/ZnSO4 have the potential to reduce the expression of inflammation factors TLR8 and IRAK1 and resulted in a decrease in NF-κB expression, mucin secretion and clotting factor F10 expression, ultimately leading to alleviation of pulmonary symptoms.
    The research findings above suggested that the treatment with CEP and AZT/ZnSO4 potentially regulated miRNAs to reduce ACE2 expression, thereby decreasing the entry of SARS-CoV-2 and its subsequent infection. Additionally, this treatment approach might suppress the production of TLR8 and IRAK1 to mitigate the inflammatory response, mucin secretion and the risk of clot formation. Consequently, the administration of CEP and AZT/ZnSO4 could alleviate pulmonary symptoms.

    摘要………………………………………………………………................................Ⅰ Abstract…………………………………………………………................................Ⅱ 目錄………………………………………………………………………………….Ⅲ 第1章 前言………………………………………………………...............................1 第2章 文獻回顧…………………………………………………...............................2 2.1 新型冠狀病毒肺炎COVID-19…………………………..............................2 2.2 SARS-CoV-2病毒結構………………………………………………………3 2.3 SARS-CoV-2發病機制………………………………………………………4 2.4 血管緊張素轉化酶2……………………………………..............................5 2.5 ACE2與SARS-CoV-2………………………………………………………6 2.6 胺基酸轉運蛋白與SARS-CoV-2………….………….…………………….7 2.7 跨膜絲氨酸蛋白酶2與SARS-CoV-2………………………………………8 2.8 核因子活化B細胞κ輕鏈增強子……...…………………………………...9 2.9 NF-κB與SARS-CoV-2…………………………………..............................10 2.10 凝血因子X與SARS-CoV-2…………………………...............................11 2.11 Toll樣受體8與SARS-CoV-2……………………………………………..12 2.12 微小核糖核酸MicroRNA……………………………..............................14 2.13 miRNA與SARS-CoV-2………………………………...............................15 2.14 miR-421-5p與ACE2………………………………………………………16 2.15 miR-200c-3p與ACE2…………………………………..............................16 2.16 miR-21-5p………………………………………………………………….17 2.17 千金藤堿………………………………………………………………….18 2.18 阿奇黴素………………………………………………………………….18 2.19 硫酸鋅ZnSO4…………………………………………………………….20 第3章 研究目的…………………………………………………………………….21 第4章 材料與方法………………………………………………………………….22 4.1藥物配製……………………………………………………………………22 4.1.1 CEP配製………………………………………………………………….22 4.1.2 AZT配製………………………………………………………………….22 4.1.3 ZnSO4配製………………………………………………………………..22 4.2 細胞培養………………………………………………...............................22 4.3 RNA萃取…………………………………………………………………...23 4.4 反轉錄聚合酶鏈反應…………………...…………………………………23 4.5 定量聚合酶鏈鎖反應定量基因及miRNA表現………………….............24 4.6 A549細胞轉染ACE2質體…………………………………………………26 4.7 Calu-3細胞轉染ACE2質體………………………………………………..26 4.8 A549細胞/Calu-3細胞之ACE2和NF-κB螢光染色……………………...26 4.9 細胞螢光定量分析………………………………………………………...27 4.10 細胞存活率試驗……..…………………………………………………...27 4.10.1 CEP毒性之細胞存活試驗……..……………………………………….27 4.10.2 AZT與ZnSO4毒性之細胞存活試驗……..…………………………….28 4.11 數據統計………………………………………………………………….28 第5章 結果………………………………………………………………………….29 5.1 CEP處理細胞存活之影響…………………………………………………29 5.2 AZT/ZnSO4處理細胞存活之影響………………………….……………...30 5.3 A549細胞處理CEP之目標基因表現……………………………………...31 5.4 Calu-3細胞處理CEP之目標基因表現……………………………………34 5.5 A549細胞處理CEP之miRNA表現………………………………………37 5.6 Calu-3細胞處理CEO之miRNA表現……………………………………..39 5.7 A549細胞處理AZT/ZnSO4之目標基因表現…………………………….41 5.8 Calu-3細胞處理AZT/ZnSO4之目標基因表現…………………………...44 5.9 A549細胞處理AZT/ZnSO4之miRNA表現………………………………47 5.10 Calu-3細胞處理AZT/ZnSO4之miRNA表現…………………………..49 5.11 A549細胞轉染ACE2質體……..…………………………………………51 5.12 Calu-3轉染ACE2質體…………………………………………………....52 5.13 CEP處理對於A549細胞轉染ACE2質體後之目標基因表現…….…..53 5.14 CEP處理對於A549細胞轉染ACE2質體後之蛋白質表現…………….55 5.15 CEP處理對於Calu-3細胞轉染ACE2質體後之目標基因表現………...56 5.16 CEP處理對於Calu-3細胞轉染ACE2質體後之蛋白質表現…………...58 5.17 AZT/ZnSO4處理對於A549細胞轉染ACE2質體後之目標基因表現….59 5.18 AZT/ZnSO4處理對於A549細胞轉染ACE2質體後之蛋白質表現…….61 5.19 AZT/ZnSO4處理對於Calu-3細胞轉染ACE2質體後之目標基因表現...63 5.20 AZT/ZnSO4處理對於Calu-3細胞轉染ACE2質體後之蛋白質表現…...65 第6章 討論………………………………………………………………………….67 6.1 CEP不能改變ACE2但能下降TMPRSS2表達以減少感染SARS-CoV-2風險.......................................................................................................................67 6.2 AZT/ZnSO4減少ACE2與B0AT1表達以降低感染SARS-CoV-2風險...........................................................................................................................68 6.3 AZT/ZnSO4上調miR-200c-3p降低ACE2表達以減少SARS-CoV-2感染………………………………………………………...………………………69 6.4 CEP與AZT/ZnSO4降低發炎基因表現以減緩感染後危害………………………………………………………………………………...70 第7章 結論………………………………………………………………………….74 補充資料……………………………………………………………………………..75 參考文獻……………………………………………………………………………..98 表格目錄 表1 本實驗使用之引子序列……………………………………………...………..25 表2 本研究進行免疫螢光染色實驗之抗體…………………………...…………..27 圖目錄 圖1 全球COVID-19確診人數………………………………………………………2 圖2 SARS-CoV-2結構示意圖………………………………………………………..3 圖3 冠狀病毒基因結構示意圖……………………………………………………...4 圖4 SARS-CoV-2發病機制…………………………………………………………..5 圖5 ACE2在腎素-血管緊張素-醛固酮系統(RAAS)中的作用……………………..6 圖6 ACE/Ang II/AT1受體軸………………………………………………………….7 圖7 B0AT1於SARS-CoV-2感染之作用……………………………………………..8 圖8 TMPRSS2介導ACE2切割……………………………………………………...9 圖9 NF-κB信號蛋白的結構…………………………………………………...……10 圖10 F10在SARS-CoV-2感染中的作用…………………………………………...12 圖11 Toll樣受體信號通路…………………………………………………………..13 圖12 miRNA生成與作用機制………………………………………………………14 圖13 CEP結構圖…………………………………………………………………….18 圖14 AZT結構圖…………………………………………………………………….20 圖15 CEP處理A549細胞與Calu-3細胞之細胞存活情形………………………...29 圖16 AZT/ZnSO4處理A549細胞與Calu-3細胞之細胞存活情形………………..30 圖17 A549細胞處理CEP之基因表現……………………………………………...33 圖18 Calu-3細胞處理CEP之基因表現…………………………………………….36 圖19 A549細胞處理CEP之miRNA表現………………………………………….38 圖20 Calu-3細胞處理CEP之miRNA表現………………………………………...40 圖21 A549細胞處理AZT/ZnSO4之基因表現……………………………………...43 圖22 Calu-3細胞處理AZT/ZnSO4之基因表現…………………………………….46 圖23 A549細胞處理AZT/ZnSO4之miRNA表現………………………………….48 圖24 Calu-3細胞處理AZT/ZnSO4之miRNA表現………………………………...50 圖25 A549細胞進行不同濃度ACE2質體轉染……………………………………51 圖26 Calu-3細胞進行不同濃度ACE2質體轉染…………………………………..52 圖27 A549細胞轉染ACE2質體後處理CEP之基因表現…………………………54 圖28 A549細胞轉染ACE2質體後處理CEP之蛋白質表現………………………55 圖29 Calu-3細胞轉染ACE2質體後處理CEP之基因表現………………………..57 圖30 Calu-3細胞轉染ACE2質體後處理CEP之蛋白質表現……………………..58 圖31 A549細胞轉染ACE2質體後處理AZT/ZnSO4之基因表現…………………60 圖32 A549細胞轉染ACE2質體後處理AZT/ZnSO4之蛋白質表現………………62 圖33 Calu-3細胞轉染ACE2質體後處理AZT/ZnSO4之基因表現………………..64 圖34 Calu-3細胞轉染ACE2質體後處理AZT/ZnSO4之蛋白質表現……………..66 圖35 CEP減少人肺上皮細胞SARS-CoV-2感染與致病相關基因以預防感染減緩感染症狀………………………………………………………………………72 圖36 AZT/ZnSO4減少人肺上皮細胞SARS-CoV-2感染與致病相關基因以預防感染減緩感染症狀………………………………………………………………73 補充資料:表格目錄 表S1 A549細胞處理CEP之基因表現量改變之倍數……………………………...75 表S2 A549細胞處理CEP之基因相對表現量……………………………………...76 表S3 Calu-3細胞處理CEP之基因表現量改變之倍數…………………………….77 表S4 Calu-3細胞處理CEP之基因相對表現量…………………………………….78 表S5 A549細胞處理AZT/ZnSO4之基因表現量改變之倍數……………………...79 表S6 A549細胞處理AZT/ZnSO4之基因相對表現量……………………………...80 表S7 Calu-3細胞處理AZT/ZnSO4之基因表現量改變之倍數……………………81 表S8 Calu-3細胞處理AZT/ZnSO4之基因相對表現量……………………………82 表S9 A549細胞轉染ACE2質體之基因表現量改變之倍數………………………83 表S10 A549細胞轉染ACE2質體之基因相對表現量……………………………..83 表S11 Calu-3細胞轉染ACE2質體之基因表現量改變之倍數……………………84 表S12 Calu-3細胞轉染ACE2質體之基因相對表現量……………………………84 表13 A549細胞轉染2.5 ng ACE2質體處理CEP之基因表現量改變之倍數……..85 表14 A549細胞轉染2.5 ng ACE2質體處理CEP之基因相對表現量……………..86 表15 Calu-3細胞轉染5 ng ACE2質體處理CEP之基因表現量改變之倍數……...87 表16 Calu-3細胞轉染5 ng ACE2質體處理CEP之基因相對表現量……………...88 表17 A549細胞轉染2.5 ng ACE2質體處理AZT/ZnSO4之基因表現量改變之倍數………………………………..……………………………………………..89 表18 A549細胞轉染2.5 ng ACE2質體處理AZT/ZnSO4之基因相對表現量……..90 表19 Calu-3細胞轉染5 ng ACE2質體處理AZT/ZnSO4之基因表現量改變之倍數…………………………………..………………………..…………………91 表20 Calu-3細胞轉染5 ng ACE2質體處理AZT/ZnSO4之基因相對表現量……..92 表21 A549細胞轉染ACE2質體後處理CEP之ACE2/NF-κB螢光染色強度(40X)…………………………………..………………………………………93 表22 Calu-3細胞轉染ACE2質體後處理CEP之ACE2/NF-κB螢光染色強度(40X)……………………………..……………………………………………93 表23 A549細胞轉染ACE2質體後處理AZT/ZnSO4之ACE2/NF-κB螢光染色強度(40X)…………………………..……………………………………………93 表24 Calu-3細胞轉染ACE2質體後處理AZT/ZnSO4之ACE2/NF-κB螢光染色強度(40X)..………………………………………………………………………94 補充資料:圖目錄 圖S1 A549細胞處理CEP之細胞毒性試驗……………………….………………..95 圖S2 Calu-3細胞處理CEP之細胞毒性試驗……………………………………….95 圖S3 A549細胞處理AZT/ZnSO4之細胞毒性試驗…………...……………………96 圖S4 Calu-3細胞處理AZT/ZnSO4之細胞毒性試驗………………………………96 圖S5 A549/Calu-3細胞之ACE2/NF-κB表現之免疫螢光染色特寫圖……………97

    1. Lu, D., Chatterjee, S., Xiao, K., Riedel, I., Wang, Y., Foo, R., Bär, C., & Thum, T. (2020). MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell. Cardiol., 148, 46-49.
    2. Beyerstedt, S., Casaro, E. B., & Rangel, É. B. (2021). COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 40(5), 905-919.
    3. Abduljalil, J. M., & Abduljalil, B. M. (2020). Epidemiology, genome, and clinical features of the pandemic SARS-CoV-2: a recent view. New Microbes New Infect., 35, 100672.
    4. Mohamadian, M., Chiti, H., Shoghli, A., Biglari, S., Parsamanesh, N., & Esmaeilzadeh, A. (2021). COVID‐19: Virology, biology and novel laboratory diagnosis. J. Gene Med., 23(2), e3303.
    5. Santos, I. d. A., Grosche, V. R., Bergamini, F. R. G., Sabino-Silva, R., & Jardim, A. C. G. (2020). Antivirals against coronaviruses: candidate drugs for SARS-CoV-2 treatment? Front. Microbiol., 11, 1818.
    6. Khailany, R., Safdar, M., & Ozaslan, M. (2020). Genomic characterization of a novel SARS-CoV-2. Gene Rep. 19: 100682.
    7. Mu, J., Xu, J., Zhang, L., Shu, T., Wu, D., Huang, M., Ren, Y., Li, X., Geng, Q., & Xu, Y. (2020). SARS-CoV-2-encoded nucleocapsid protein acts as a viral suppressor of RNA interference in cells. Sci China Life Sci., 63(9), 1413-1416.
    8. Kang, S., Yang, M., Hong, Z., Zhang, L., Huang, Z., Chen, X., He, S., Zhou, Z., Zhou, Z., & Chen, Q. (2020). Crystal structure of SARS-CoV-2 nucleocapsid protein RNA binding domain reveals potential unique drug targeting sites. Acta Pharm. Sin. B., 10(7), 1228-1238.
    9. Pillay, T. S. (2020). Gene of the month: the 2019-nCoV/SARS-CoV-2 novel coronavirus spike protein. J. Clin. Pathol., 73(7), 366-369.
    10. Voto, C., Berkner, P., & Brenner, C. (2020). Overview of the pathogenesis and treatment of SARS-CoV-2 for clinicians: a comprehensive literature review. Cureus., 12(9).
    11. Meng, B., Abdullahi, A., Ferreira, I. A., Goonawardane, N., Saito, A., Kimura, I., Yamasoba, D., Gerber, P. P., Fatihi, S., & Rathore, S. (2022). Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature, 603(7902), 706-714.
    12. Coutard, B., Valle, C., De Lamballerie, X., Canard, B., Seidah, N. G., & Decroly, E. (2020). The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res., 176, 104742.
    13. Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., Huan, Y., Yang, P., Zhang, Y., & Deng, W. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 11(8), 875-879.
    14. Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., & Turner, A. J. (2000). A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 275(43), 33238-33243.
    15. Lambert, D. W., Yarski, M., Warner, F. J., Thornhill, P., Parkin, E. T., Smith, A. I., Hooper, N. M., & Turner, A. J. (2005). Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem., 280(34), 30113-30119.
    16. Hamming, I., Timens, W., Bulthuis, M., Lely, A., Navis, G. v., & van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 203(2), 631-637.
    17. Xiao, L., Sakagami, H., & Miwa, N. (2020). ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? Viruses., 12(5), 491.
    18. Tikellis, C., Bernardi, S., & Burns, W. C. (2011). Angiotensin-converting enzyme 2 is a key modulator of the renin–angiotensin system in cardiovascular and renal disease. Curr. Opin. Nephrol. Hypertens., 20(1), 62-68.
    19. Turner, A. J., Tipnis, S. R., Guy, J. L., Rice, G. I., & Hooper, N. M. (2002). ACEH/ACE2 is a novel mammalian metallocarboxypeptidase and a homologue of angiotensin-converting enzyme insensitive to ACE inhibitors. Can. J. Physiol. Pharmacol., 80(4), 346-353.
    20. Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., Sigl, V., Hanada, T., Hanada, R., & Lipinski, S. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477-481.
    21. Yan, R., Zhang, Y., Li, Y., Xia, L., & Zhou, Q. (2020). Structure of dimeric full-length human ACE2 in complex with B0AT1. BioRxiv 2020 Pages 2020.02. 17.951848.
    22. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., & Huang, C.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270-273.
    23. Groß, S., Jahn, C., Cushman, S., Bär, C., & Thum, T. (2020). SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J. Mol. Cell. Cardiol., 144, 47-53.
    24. Jiang, F., Yang, J., Zhang, Y., Dong, M., Wang, S., Zhang, Q., Liu, F. F., Zhang, K., & Zhang, C. (2014). Angiotensin-converting enzyme 2 and angiotensin 1–7: novel therapeutic targets. Nat. Rev. Cardiol., 11(7), 413-426.
    25. Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med., 46(4), 586-590.
    26. Wang, J., Jiang, M., Chen, X., & Montaner, L. J. (2020). Cytokine storm and leukocyte changes in mild versus severe SARS‐CoV‐2 infection: review of 3939 COVID‐19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 108(1), 17-41.
    27. Verdecchia, P., Cavallini, C., Spanevello, A., & Angeli, F. (2020). The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur. J. Intern. Med., 76, 14-20.
    28. Liu, Y., Yang, Y., Zhang, C., Huang, F., Wang, F., Yuan, J., Wang, Z., Li, J., Li, J., & Feng, C. (2020). Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci., 63(3), 364-374.
    29. Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J.-C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ. Res., 126(10), 1456-1474.
    30. Sharma, R. K., Stevens, B. R., Obukhov, A. G., Grant, M. B., Oudit, G. Y., Li, Q., Richards, E. M., Pepine, C. J., & Raizada, M. K. (2020). ACE2 (Angiotensin-Converting Enzyme 2) in cardiopulmonary diseases: ramifications for the control of SARS-CoV-2. Hypertension, 76(3), 651-661.
    31. Camargo, S. M., Singer, D., Makrides, V., Huggel, K., Pos, K. M., Wagner, C. A., Kuba, K., Danilczyk, U., Skovby, F., & Kleta, R. (2009). Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology, 136(3), 872-882. e873.
    32. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 367(6485), 1444-1448.
    33. Stevens, B. R., Ross, H. J., & Wright, E. M. (1982). Multiple transport pathways for neutral amino acids in rabbit jejunal brush border vesicles. J. Membr. Biol., 66(1), 213-225.
    34. Tian, Y., Rong, L., Nian, W., & He, Y. (2020). gastrointestinal features in COVID‐19 and the possibility of faecal transmission. Aliment. Pharmacol. Ther., 51(9), 843-851.
    35. Zuo, T., Zhang, F., Lui, G. C., Yeoh, Y. K., Li, A. Y., Zhan, H., Wan, Y., Chung, A. C., Cheung, C. P., & Chen, N. (2020). Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology, 159(3), 944-955. e948.
    36. Xing, Y.-H., Ni, W., Wu, Q., Li, W.-J., Li, G.-J., Wang, W.-D., Tong, J.-N., Song, X.-F., Wong, G. W.-K., & Xing, Q.-S. (2020). Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J. Microbiol. Immunol. Infect., 53(3), 473-480.
    37. Iwata-Yoshikawa, N., Okamura, T., Shimizu, Y., Hasegawa, H., Takeda, M., & Nagata, N. (2019). TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 93(6), e01815-01818.
    38. Khan, H., Patel, S., & Majumdar, A. (2021). Role of NRF2 and Sirtuin activators in COVID-19. Clin. Immunol., 233, 108879.
    39. Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O., & Pöhlmann, S. (2014). TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 88(2), 1293-1307.
    40. Zipeto, D., Palmeira, J. d. F., Argañaraz, G. A., & Argañaraz, E. R. (2020). ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol., 11, 2642.
    41. Gilmore, T. D. (2006). Introduction to NF-κB: players, pathways, perspectives. Oncogene, 25(51), 6680-6684.
    42. Levenson, J. M., Choi, S., Lee, S.-Y., Cao, Y. A., Ahn, H. J., Worley, K. C., Pizzi, M., Liou, H.-C., & Sweatt, J. D. (2004). A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-rel. J. Neurosci., 24(16), 3933-3943.
    43. Downie, J. S., Hu, X., Lee, J. H., Choi, K., Cunningham, S. J., & Hao, Y. (2014). Ten years of MIREX: reflections, challenges and opportunities. ISMIR. 2014 (pp. 657-662).
    44. Xie, Q., Kashiwabara, Y., & Nathan, C. (1994). Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem., 269(7), 4705-4708.
    45. Gilmore, T. D. (1990). NF-kappa B, KBF1, dorsal, and related matters. Cell, 62(5), 841-843.
    46. Hayden, M. S., & Ghosh, S. (2008). Shared principles in NF-κB signaling. Cell, 132(3), 344-362.
    47. Goel, S., Saheb Sharif-Askari, F., Saheb Sharif Askari, N., Madkhana, B., Alwaa, A. M., Mahboub, B., Zakeri, A. M., Ratemi, E., Hamoudi, R., & Hamid, Q. (2021). SARS-CoV-2 Switches ‘on’MAPK and NFκB Signaling via the Reduction of Nuclear DUSP1 and DUSP5 Expression. Front. Pharmacol., 12, 631879.
    48. Li, F., Michelson, A. P., Foraker, R., Zhan, M., & Payne, P. R. (2021). Computational analysis to repurpose drugs for COVID-19 based on transcriptional response of host cells to SARS-CoV-2. BMC Med. Inf. Decis. Making, 21(1), 1-13.
    49. Bartolini, D., Stabile, A. M., Vacca, C., Pistilli, A., Rende, M., Gioiello, A., Cruciani, G., & Galli, F. (2022). Endoplasmic reticulum stress and NF‐kB activation in SARS‐CoV‐2 infected cells and their response to antiviral therapy. IUBMB Life, 74(1), 93-100.
    50. Giustarini, D., Santucci, A., Bartolini, D., Galli, F., & Rossi, R. (2021). The age-dependent decline of the extracellular thiol-disulfide balance and its role in SARS-CoV-2 infection. Redox Biol., 41, 101902.
    51. Tam, A. B., Mercado, E. L., Hoffmann, A., & Niwa, M. (2012). ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS ONE., 7(10), e45078.
    52. Zhang, X., Wu, K., Wang, D., Yue, X., Song, D., Zhu, Y., & Wu, J. (2007). Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology, 365(2), 324-335.
    53. Bektas, A., Zhang, Y., Lehmann, E., Wood III, W. H., Becker, K. G., Madara, K., Ferrucci, L., & Sen, R. (2014). Age-associated changes in basal NF-κB function in human CD4+ T lymphocytes via dysregulation of PI3 kinase. Aging (Albany NY)., 6(11), 957.
    54. Kircheis, R. (2021). COVID-19: Mechanistic Model of the African Paradox Supports the Central Role of the NF-κB Pathway. Viruses. 2021 Sep 21;13(9):1887.
    55. Brasier, A. R., Jamaluddin, M., Han, Y., Patterson, C., & Runge, M. S. (2000). Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-кB (NF-кB) transcription factor. Mol Cell Biochem. 2000 Sep;212(1-2):155-69.
    56. Khan, S., Shafiei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., & Zaki, H. (2021). SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife., 10, e68563.
    57. Nilsson-Payant, B. E., Uhl, S., Grimont, A., Doane, A. S., Cohen, P., Patel, R. S., Higgins, C. A., Acklin, J. A., Bram, Y., & Chandar, V. (2021). The NF-κB transcriptional footprint is essential for SARS-CoV-2 replication. J. Virol., 95(23), e01257-01221.
    58. Milani, D., Caruso, L., Zauli, E., Al Owaifeer, A. M., Secchiero, P., Zauli, G., Gemmati, D., & Tisato, V. (2022). p53/NF-kB balance in SARS-CoV-2 infection: From OMICs, genomics and pharmacogenomics insights to tailored therapeutic perspectives (COVIDomics). Front. Pharmacol., 13.
    59. Hariharan, A., Hakeem, A. R., Radhakrishnan, S., Reddy, M. S., & Rela, M. (2021). The role and therapeutic potential of NF-kappa-B pathway in severe COVID-19 patients. Inflammopharmacology, 29(1), 91-100.
    60. Frydman, G. H., Streiff, M. B., Connors, J. M., & Piazza, G. (2020). The potential role of coagulation factor Xa in the pathophysiology of COVID-19: a role for anticoagulants as multimodal therapeutic agents. TH Open., 4(04), e288-e299.
    61. Du, L., Kao, R. Y., Zhou, Y., He, Y., Zhao, G., Wong, C., Jiang, S., Yuen, K.-Y., Jin, D.-Y., & Zheng, B.-J. (2007). Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem. Biophys. Res. Commun., 359(1), 174-179.
    62. Masi, P., Hékimian, G., Lejeune, M., Chommeloux, J., Desnos, C., Pineton De Chambrun, M., Martin-Toutain, I., Nieszkowska, A., Lebreton, G., & Bréchot, N. (2020). Systemic Inflammatory Response Syndrome Is a Major Contributor to COVID-19–Associated Coagulopathy: Insights From a Prospective, Single-Center Cohort Study. Circulation, 142(6), 611-614.
    63. Baig, A. M., Khaleeq, A., Ali, U., & Syeda, H. (2020). Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci., 11(7), 995-998.
    64. Shikamoto, Y., & Morita, T. (1999). Expression of factor X in both the rat brain and cells of the central nervous system. FEBS Lett., 463(3), 387-389.
    65. Xia, H., Sriramula, S., Chhabra, K. H., & Lazartigues, E. (2013). Brain angiotensin-converting enzyme type 2 shedding contributes to the development of neurogenic hypertension. Circ. Res., 113(9), 1087-1096.
    66. Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID‐19 infection: Implications for risk, severity, and outcomes. FASEB J., 34(7), 8787-8795.
    67. Birra, D., Benucci, M., Landolfi, L., Merchionda, A., Loi, G., Amato, P., Licata, G., Quartuccio, L., Triggiani, M., & Moscato, P. (2020). COVID 19: a clue from innate immunity. Immunol. Res., 68(3), 161-168.
    68. Angelopoulou, A., Alexandris, N., Konstantinou, E., Mesiakaris, K., Zanidis, C., Farsalinos, K., & Poulas, K. (2020). Imiquimod-A toll like receptor 7 agonist-Is an ideal option for management of COVID 19. Environ. Res., 188, 109858.
    69. Lester, S. N., & Li, K. (2014). Toll-like receptors in antiviral innate immunity. J. Mol. Biol., 426(6), 1246-1264.
    70. Khanmohammadi, S., & Rezaei, N. (2021). Role of Toll‐like receptors in the pathogenesis of COVID‐19. J. Med. Virol., 93(5), 2735-2739.
    71. Moreno-Eutimio, M. A., Lopez-Macias, C., & Pastelin-Palacios, R. (2020). Bioinformatic analysis and identification of single-stranded RNA sequences recognized by TLR7/8 in the SARS-CoV-2, SARS-CoV, and MERS-CoV genomes. Microbes Infect., 22(4-5), 226-229.
    72. De Groot, N. G., & Bontrop, R. E. (2020). COVID-19 pandemic: is a gender-defined dosage effect responsible for the high mortality rate among males? In: Springer. Immunogenetics. 2020 Jul;72(5):275-277.
    73. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281-297.
    74. Misiewicz-Krzeminska, I., Krzeminski, P., Corchete, L. A., Quwaider, D., Rojas, E. A., Herrero, A. B., & Gutiérrez, N. C. (2019). Factors regulating microRNA expression and function in multiple myeloma. Non-coding RNA, 5(1), 9.
    75. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350-355.
    76. Cao, T., & Zhen, X. C. (2018). Dysregulation of mi RNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther., 24(7), 586-597.
    77. Jansson, M. D., & Lund, A. H. (2012). MicroRNA and cancer. Mol. Oncol., 6(6), 590-610.
    78. Khan, M. A.-A.-K., Sany, M. R. U., Islam, M. S., & Islam, A. B. M. M. K. (2020). Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet., 11, 765.
    79. Soroceanu, L., Akhavan, A., & Cobbs, C. S. (2008). Platelet-derived growth factor-α receptor activation is required for human cytomegalovirus infection. Nature, 455(7211), 391-395.
    80. García-Expósito, L., Barroso-González, J., Puigdomènech, I., Machado, J.-D., Blanco, J., & Valenzuela-Fernández, A. (2011). HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes. Mol. Biol. Cell, 22(8), 1148-1166.
    81. Diehl, N., & Schaal, H. (2013). Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses, 5(12), 3192-3212.
    82. Zheng, K., Kitazato, K., & Wang, Y. (2014). Viruses exploit the function of epidermal growth factor receptor. Rev. Med. Virol., 24(4), 274-286.
    83. Elbahesh, H., Cline, T., Baranovich, T., Govorkova, E. A., Schultz-Cherry, S., & Russell, C. J. (2014). Novel roles of focal adhesion kinase in cytoplasmic entry and replication of influenza A viruses. J. Virol., 88(12), 6714-6728.
    84. Swaine, T., & Dittmar, M. T. (2015). CDC42 use in viral cell entry processes by RNA viruses. Viruses, 7(12), 6526-6536.
    85. Wang, J., Zheng, X., Peng, Q., Zhang, X., & Qin, Z. (2020). Eph receptors: the bridge linking host and virus. Cell. Mol. Life Sci., 77(12), 2355-2365.
    86. Mateo, M., Generous, A., Sinn, P. L., & Cattaneo, R. (2015). Connections matter− how viruses use cell–cell adhesion components. J. Cell Sci., 128(3), 431-439.
    87. Haqshenas, G., & Doerig, C. (2019). Targeting of host cell receptor tyrosine kinases by intracellular pathogens. Science signaling, 12(599), eaau9894.
    88. Ambros, V. (2001). microRNAs: tiny regulators with great potential. Cell, 107(7), 823-826.
    89. Trobaugh, D. W., & Klimstra, W. B. (2017). MicroRNA regulation of RNA virus replication and pathogenesis. Trends Mol. Med., 23(1), 80-93.
    90. Głobińska, A., Pawełczyk, M., & Kowalski, M. L. (2014). MicroRNAs and the immune response to respiratory virus infections. Expert Rev. Clin. Immunol., 10(7), 963-971.
    91. Lai, F. W., Stephenson, K. B., Mahony, J., & Lichty, B. D. (2014). Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation. J. Virol., 88(1), 54-65.
    92. Islam, M. S., Khan, M. A. A. K., Murad, M. W., Karim, M., & Islam, A. B. M. M. K. (2019). In silico analysis revealed Zika virus miRNAs associated with viral pathogenesis through alteration of host genes involved in immune response and neurological functions. J. Med. Virol., 91(9), 1584-1594.
    93. Li, X., & Zou, X. (2019). An overview of RNA virus-encoded microRNAs. ExRNA, 1(1), 1-5.
    94. Mallick, B., Ghosh, Z., & Chakrabarti, J. (2009). MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE., 4(11), e7837.
    95. Ma, Y., Wang, C., Xue, M., Fu, F., Zhang, X., Li, L., Yin, L., Xu, W., Feng, L., & Liu, P. (2018). The coronavirus transmissible gastroenteritis virus evades the type I interferon response through IRE1α-mediated manipulation of the microRNA miR-30a-5p/SOCS1/3 axis. J. Virol., 92(22), e00728-00718.
    96. Morales, L., Oliveros, J. C., Fernandez-Delgado, R., Robert tenOever, B., Enjuanes, L., & Sola, I. (2017). SARS-CoV-encoded small RNAs contribute to infection-associated lung pathology. Cell Host Microbe., 21(3), 344-355.
    97. del Campo, J. A., García-Valdecasas, M., Rojas, L., Rojas, Á., & Romero-Gómez, M. (2012). The hepatitis C virus modulates insulin signaling pathway in vitro promoting insulin resistance. PLoS ONE., 7(10), e47904.
    98. Dennert, R., Crijns, H. J., & Heymans, S. (2008). Acute viral myocarditis. Eur. Heart J., 29(17), 2073-2082.
    99. Kanikarla-Marie, P., & Jain, S. K. (2016). Hyperketonemia and ketosis increase the risk of complications in type 1 diabetes. Free Radic. Biol. Med., 95, 268-277.
    100. Abdolahi, S., Hosseini, M., Rezaei, R., Mohebbi, S. R., Rostami-Nejad, M., Mojarad, E. N., Mirjalali, H., Yadegar, A., Aghdaei, H. A., & Zali, M. R. (2022). Evaluation of miR-200c-3p and miR-421-5p levels during immune responses in the admitted and recovered COVID-19 subjects. Infect. Genet. Evol., 98, 105207.
    101. Lambert, D. W., Lambert, L. A., Clarke, N. E., Hooper, N. M., Porter, K. E., & Turner, A. J. (2014). Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421. Clin. Sci., 127(4), 243-249.
    102. Gubernatorova, E. O., Gorshkova, E. A., Polinova, A., & Drutskaya, M. (2020). IL-6: Relevance for immunopathology of SARS-CoV-2. Cytokine Growth Factor Rev., 53, 13-24.
    103. Trojanowicz, B., Imdahl, T., Ulrich, C., Fiedler, R., & Girndt, M. (2019). Circulating miR-421 targeting leucocytic angiotensin converting enzyme 2 is elevated in patients with chronic kidney disease. Nephron, 141(1), 61-74.
    104. Mutlu, M., Raza, U., Saatci, Ö., Eyüpoğlu, E., Yurdusev, E., & Şahin, Ö. (2016). miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J. Mol. Med., 94(6), 629-644.
    105. Guiot, J., Henket, M., Remacle, C., Cambier, M., Struman, I., Winandy, M., Moermans, C., Louis, E., Malaise, M., & Ribbens, C. (2023). Systematic review of overlapping microRNA patterns in COVID-19 and idiopathic pulmonary fibrosis. Respir. Res., 24(1), 1-23.
    106. Saulle, I., Garziano, M., Fenizia, C., Cappelletti, G., Parisi, F., Clerici, M., Cetin, I., Savasi, V., & Biasin, M. (2021). MiRNA profiling in plasma and placenta of SARS-CoV-2-infected pregnant women. Cells, 10(7), 1788.
    107. Yamada, M., Kubo, H., Ota, C., Takahashi, T., Tando, Y., Suzuki, T., Fujino, N., Makiguchi, T., Takagi, K., & Suzuki, T. (2013). The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells. Respir. Res., 14(1), 1-13.
    108. Liu, G., Friggeri, A., Yang, Y., Milosevic, J., Ding, Q., Thannickal, V. J., Kaminski, N., & Abraham, E. (2010). miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med., 207(8), 1589-1597.
    109. Zhou, J., Xu, Q., Zhang, Q., Wang, Z., & Guan, S. (2018). A novel molecular mechanism of microRNA‐21 inducing pulmonary fibrosis and human pulmonary fibroblast extracellular matrix through transforming growth factor β1–mediated SMADs activation. J. Cell. Biochem., 119(9), 7834-7843.
    110. Bailly, C. (2019). Cepharanthine: An update of its mode of action, pharmacological properties and medical applications. Phytomedicine, 62, 152956.
    111. Rogosnitzky, M., & Danks, R. (2011). Therapeutic potential of the biscoclaurine alkaloid, cepharanthine, for a range of clinical conditions. Pharmacol Rep., 63(2), 337-347.
    112. Zhang, C.-h., Wang, Y.-f., Liu, X.-j., Lu, J.-H., Qian, C.-w., Wan, Z.-y., Yan, X.-g., Zheng, H.-y., Zhang, M.-y., & Xiong, S. (2005). Antiviral activity of cepharanthine against severe acute respiratory syndrome coronavirus in vitro. Chin. Med. J. (Engl.), 118(06), 493-496.
    113. Fan, H.-H., Wang, L.-Q., Liu, W.-L., An, X.-P., Liu, Z.-D., He, X.-Q., Song, L.-H., & Tong, Y.-G. (2020). Repurposing of clinically approved drugs for treatment of coronavirus disease 2019 in a 2019-novel coronavirus-related coronavirus model. Chin. Med. J. (Engl.), 133(09), 1051-1056.
    114. Rubinstein, E. (2001). Comparative safety of the different macrolides. Int. J. Antimicrob. Agents, 18, 71-76.
    115. Zimmermann, P., Ziesenitz, V. C., Curtis, N., & Ritz, N. (2018). The immunomodulatory effects of macrolides—a systematic review of the underlying mechanisms. Front. Immunol., 9, 302.
    116. Jaruratanasirikul, S., Hortiwakul, R., Tantisarasart, T., Phuenpathom, N., & Tussanasunthornwong, S. (1996). Distribution of azithromycin into brain tissue, cerebrospinal fluid, and aqueous humor of the eye. Antimicrob. Agents Chemother., 40(3), 825-826.
    117. Bridwell, R., Long, B., & Gottlieb, M. (2020). Neurologic complications of COVID-19. Am. J. Emerg. Med., 38(7), 1549. e1543-1549. e1547.
    118. Gielen, V., Johnston, S. L., & Edwards, M. R. (2010). Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur. Respir. J., 36(3), 646-654.
    119. Sandeep, S., & McGregor, K. (2020). Energetics based modeling of hydroxychloroquine and azithromycin binding to the SARS-CoV-2 spike (S) protein-ACE2 complex. ChemRxiv. Cambridge: Cambridge Open Engage; 2020.
    120. Fantini, J., Chahinian, H., & Yahi, N. (2020). Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal. Int. J. Antimicrob. Agents, 56(2), 106020.
    121. Li, C., Zu, S., Deng, Y.-Q., Li, D., Parvatiyar, K., Quanquin, N., Shang, J., Sun, N., Su, J., & Liu, Z. (2019). Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses. Antimicrob. Agents Chemother., 63(12), e00394-00319.
    122. Slater, M., Torr, E., Harrison, T., Forrester, D., Knox, A., Shaw, D., & Sayers, I. (2016). The differential effects of azithromycin on the airway epithelium in vitro and in vivo. Physiol. Rep., 4(18), e12960.
    123. Stellari, F. F., Sala, A., Donofrio, G., Ruscitti, F., Caruso, P., Topini, T. M., Francis, K. P., Li, X., Carnini, C., & Civelli, M. (2014). Azithromycin inhibits nuclear factor‐κB activation during lung inflammation: an in vivo imaging study. Pharmacol. Res. Perspect., 2(5), e00058.
    124. Haydar, D., Cory, T. J., Birket, S. E., Murphy, B. S., Pennypacker, K. R., Sinai, A. P., & Feola, D. J. (2019). Azithromycin polarizes macrophages to an M2 phenotype via inhibition of the STAT1 and NF-κB signaling pathways. J. Immunol., 203(4), 1021-1030.
    125. Zuo, Y., Yalavarthi, S., Shi, H., Gockman, K., Zuo, M., Madison, J. A., Blair, C., Weber, A., Barnes, B. J., & Egeblad, M. (2020). Neutrophil extracellular traps in COVID-19. JCI insight., 5(11).
    126. Cory, T. J., Birket, S. E., Murphy, B. S., Mattingly, C., Breslow-Deckman, J. M., & Feola, D. J. (2013). Azithromycin increases in vitro fibronectin production through interactions between macrophages and fibroblasts stimulated with Pseudomonas aeruginosa. J. Antimicrob. Chemother., 68(4), 840-851.
    127. Willems-Widyastuti, A., Vanaudenaerde, B. M., Vos, R., Dilisen, E., Verleden, S. E., De Vleeschauwer, S. I., Vaneylen, A., Mooi, W. J., de Boer, W. I., & Sharma, H. S. (2013). Azithromycin Attenuates Fibroblast Growth Factors Induced Vascular Endothelial Growth Factor Via p38 MAPK Signaling in Human Airway Smooth Muscle Cells. Cell Biochem. Biophys., 67, 331-339.
    128. Lavery, A. M., Preston, L. E., Ko, J. Y., Chevinsky, J. R., DeSisto, C. L., Pennington, A. F., Kompaniyets, L., Datta, S. D., Click, E. S., & Golden, T. (2020). Characteristics of hospitalized COVID-19 patients discharged and experiencing same-hospital readmission—United States, March–August 2020. Morb. Mortal. Wkly. Rep., 69(45), 1695.
    129. Lobo, J. C., Torres, J. P. M., Fouque, D., & Mafra, D. (2010). Zinc deficiency in chronic kidney disease: is there a relationship with adipose tissue and atherosclerosis? Biol. Trace Elem. Res., 135, 16-21.
    130. Barrett, A. J., Woessner, J. F., & Rawlings, N. D. (2012). Handbook of Proteolytic Enzymes, Volume 1 (Vol. 1). Elsevier.
    131. Bünning, P., & Riordan, J. F. (1985). The functional role of zinc in angiotensin converting enzyme: implications for the enzyme mechanism. J. Inorg. Biochem., 24(3), 183-198.
    132. Reeves, P. G., & O’Dell, B. L. (1986). Effects of dietary zinc deprivation on the activity of angiotensin-converting enzyme in serum of rats and guinea pigs. J. Nutr., 116(1), 128-134.
    133. Salgo, M. P. (2021). COVID-19: Zinc and angiotensin-converting enzyme 2 (ACE2) deficiencies as determinants of risk and severity of disease: A narrative review. Infect Dis Ther., 10(3), 1215-1225.
    134. Oyagbemi, A. A., Ajibade, T. O., Aboua, Y. G., Gbadamosi, I. T., Adedapo, A. D. A., Aro, A. O., Adejumobi, O. A., Thamahane‐Katengua, E., Omobowale, T. O., & Falayi, O. O. (2021). Potential health benefits of zinc supplementation for the management of COVID‐19 pandemic. J. Food Biochem., 45(2), e13604.
    135. Jackson, C. B., Farzan, M., Chen, B., & Choe, H. (2022). Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 23(1), 3-20.
    136. Zhao, H., Lu, L., Peng, Z., Chen, L.-L., Meng, X., Zhang, C., Ip, J. D., Chan, W.-M., Chu, A. W.-H., & Chan, K.-H. (2022). SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerging Microbes Infect., 11(1), 277-283.
    137. Xu, Y., Li, X., Zhu, B., Liang, H., Fang, C., Gong, Y., Guo, Q., Sun, X., Zhao, D., & Shen, J. (2020). Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med., 26(4), 502-505.
    138. Bosseboeuf, E., Aubry, M., Nhan, T., De Pina, J., Rolain, J., Raoult, D., & Musso, D. (2018). Azithromycin inhibits the replication of Zika virus. J Antivir Antiretrovir., 10(1), 6-11.
    139. Khezri, M. R., Zolbanin, N. M., Ghasemnejad-Berenji, M., & Jafari, R. (2021). Azithromycin: Immunomodulatory and antiviral properties for SARS-CoV-2 infection. Eur. J. Pharmacol., 905, 174191.
    140. Gouda, A. S., Adbelruhman, F. G., Elbendary, R. N., Alharbi, F. A., Alhamrani, S. Q., & Mégarbane, B. (2021). A comprehensive insight into the role of zinc deficiency in the renin-angiotensin and kinin-kallikrein system dysfunctions in COVID-19 patients. Saudi J. Biol. Sci., 28(6), 3540-3547.
    141. Jothimani, D., Kailasam, E., Danielraj, S., Nallathambi, B., Ramachandran, H., Sekar, P., Manoharan, S., Ramani, V., Narasimhan, G., & Kaliamoorthy, I. (2020). COVID-19: Poor outcomes in patients with zinc deficiency. Int. J. Infect. Dis., 100, 343-349.
    142. Zamai, L. (2020). The Yin and Yang of ACE/ACE2 pathways: the rationale for the use of renin-angiotensin system inhibitors in COVID-19 patients. Cells, 9(7), 1704.
    143. Zhang, H., Shao, L., Lin, Z., Long, Q.-X., Yuan, H., Cai, L., Jiang, G., Guo, X., Yang, R., & Zhang, Z. (2022). APOE interacts with ACE2 inhibiting SARS-CoV-2 cellular entry and inflammation in COVID-19 patients. Signal Transduction Targeted Ther., 7(1), 261.
    144. Matsuura, T., Soeki, T., Fukuda, D., Uematsu, E., Tobiume, T., Hara, T., Kusunose, K., Ise, T., Yamaguchi, K., & Yagi, S. (2021). Activated factor X signaling pathway via protease-activated receptor 2 is a novel therapeutic target for preventing atrial fibrillation. Circ. J., 85(8), 1383-1391.
    145. Simmons, G., Bertram, S., Glowacka, I., Steffen, I., Chaipan, C., Agudelo, J., Lu, K., Rennekamp, A. J., Hofmann, H., & Bates, P. (2011). Different host cell proteases activate the SARS-coronavirus spike-protein for cell–cell and virus–cell fusion. Virology, 413(2), 265-274.
    146. Lam, W.-Y., Yeung, A. C.-M., Ngai, K. L.-K., Li, M.-S., To, K.-F., Tsui, S. K.-W., & Chan, P. K.-S. (2013). Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol., 13(1), 1-12.
    147. Liu, Y., Lv, J., Liu, J., Li, M., Xie, J., Lv, Q., Deng, W., Zhou, N., Zhou, Y., & Song, J. (2020). Mucus production stimulated by IFN-AhR signaling triggers hypoxia of COVID-19. Cell Res., 30(12), 1078-1087.
    148. Biagioli, M., Marchianò, S., Roselli, R., Di Giorgio, C., Bellini, R., Bordoni, M., Gidari, A., Sabbatini, S., Francisci, D., & Fiorillo, B. (2021). Discovery of a AHR pelargonidin agonist that counter-regulates Ace2 expression and attenuates ACE2-SARS-CoV-2 interaction. Biochem. Pharmacol., 188, 114564.
    149. Scotton, C. J., Krupiczojc, M. A., Königshoff, M., Mercer, P. F., Lee, Y. G., Kaminski, N., Morser, J., Post, J. M., Maher, T. M., & Nicholson, A. G. (2009). Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J. Clin. Investig., 119(9), 2550-2563.
    150. Veras, F. P., Pontelli, M. C., Silva, C. M., Toller-Kawahisa, J. E., de Lima, M., Nascimento, D. C., Schneider, A. H., Caetité, D., Tavares, L. A., & Paiva, I. M. (2020). SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med., 217(12).
    151. Campbell, G. R., Rawat, P., & Spector, S. A. (2023). Pacritinib inhibition of IRAK1 blocks aberrant TLR8 signalling by SARS-CoV-2 and HIV-1-derived RNA. J. Innate Immun., 15(1), 96-106.
    152. Sugiyama, M. G., Cui, H., Redka, D. y. S., Karimzadeh, M., Rujas, E., Maan, H., Hayat, S., Cheung, K., Misra, R., & McPhee, J. B. (2021). Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Sci. Rep., 11(1), 1-18.
    153. Costa, T. J., Potje, S. R., Fraga-Silva, T. F., da Silva-Neto, J. A., Barros, P. R., Rodrigues, D., Machado, M. R., Martins, R. B., Santos-Eichler, R. A., & Benatti, M. N. (2022). Mitochondrial DNA and TLR9 activation contribute to SARS-CoV-2-induced endothelial cell damage. Vasc. Pharmacol., 142, 106946.
    154. Okamoto, H., & Ichikawa, N. (2021). The pivotal role of the angiotensin-II–NF-κB axis in the development of COVID-19 pathophysiology. Hypertens. Res., 44(1), 126-128.

    QR CODE