簡易檢索 / 詳目顯示

研究生: 劉星佑
Hsing Yu Liu
論文名稱: 建立在BB84 模型下之高度安全性量子訊息傳輸協定
High Secure Quantum Message Communication Based on BB84 Model
指導教授: 張隆紋
Long Wen Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 31
中文關鍵詞: 量子金鑰協定
外文關鍵詞: quantum, key distribution
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來量子相關研究的發展,量子電腦逐漸成型,伴隨而來的,就是量子計算與量子密碼學的相關研究。一旦量子電腦完全成型,舊有的密碼理論將會瓦解。舉例來說,利用量子電腦,RSA的加密方式將馬上被淘汰。同樣地,一些傳統的密碼交換理論勢必也會因量子電腦的強大運算能力而瓦解。竊取者透過量子電腦將可輕鬆地竊取破解使用傳統加密理論的使用者所要傳遞的訊息。
    本篇論文將探討BB84模型所建立出來的量子金鑰分發協定,以整合出一套金鑰分發系統,有助於讓訊息傳輸變得更安全,更有保障。而在傳統的金鑰分發組態方面,為了使溝通雙方有身份認證的保障,通常需要第三者,金鑰分發中心,來負責分發雙方要進行溝通所需的金鑰。在此,為了不讓竊取者有任何可能拿到經由金鑰加密之訊息的機會,以確保竊取者絕對無法利用強大的計算能力來破解主要金鑰,本論文討論在星狀結構網路中利用BB84模型來建立溝通雙方所需的會議金鑰,一方面確保主要金鑰不會因傳輸而遭到破解,一方面也使金鑰分發中心在分發金鑰方面更便利且更安全。
    綜觀之,本篇論文希望所提出的量子金鑰傳輸協定可以讓使用者在面對量子電腦強大運算能力之下,還能夠做高度安全性的訊息傳遞,而不被竊取者盜取重要資訊,並且可以做為日後在量子密碼通訊領域的研究參考。


    Having grown rapidly in recent years, quantum information processing arises out of an integration of quantum mechanics and information science. This field includes quantum computing and quantum cryptography. Successfully implementing quantum computers would make conventional cryptography methods obsolete. For instance, quantum computers can be used to compute secret keys during polynomial not exponential time; therefore, RSA, an encryption method, would be easily made obsolete. The same is true for key distribution. Individuals using conventional key distribution methods would have their messages easily decrypted by eavesdroppers using quantum computers.
    So, in this paper, an integrated model for quantum key distribution using BB84 model is developed to ensure secure communication among users. The concept of session key is plugged in the proposed communication model to assure the security and checked the accuracy by CRC(Cyclic Redundancy Check). In addition, the conventional key distribution scenario develops that each user communicates with the session keys established by the key distribution center (KDC). We propose a novel method for KDC to produce the session key in order for message communication without using master key in the star network.
    As anticipated, the proposed quantum cryptography protocol can provide a much securer key distribution than conventional ones can for users to ensure confidentiality of their information. Additionally, the proposed protocol can provide a valuable reference for cryptography research to enhance the security of data communication and protect important communication from eavesdropping.

    1 Introduction 1 2 Related Work 2.1 Quantum information theory 2 2.2 BB84 model 4 2.3 Eavesdropping detection in BB84 model 8 2.4 Conventional Key Distribution Scenario 11 2.5 Cyclic Redundancy Check 13 3 Quantum Key Distribution Using Session Keys 3.1 Quantum message communication model 15 3.2 The concept of quantum key distribution using session keys 16 3.3 The proposed quantum key distribution model using session keys 20 4 Quantum Key Distribution With KDC 4.1 The concept of quantum key distribution with KDC 24 4.2 The proposed quantum key distribution model with KDC 27 5 Conclusion 30 Reference 31

    [1] Wiesner, S., "Conjugate coding", Sigact News, vol. 15, no. 1, 1983, pp. 78 - 88; original manuscript written circa 1970.
    [2] Bennett, C. H., Bessette, F., Brassard, G., Salvail, L. and Smolin, J., "Experimental quantum cryptography", Journal of Cryptology, vol. 5, no. 1, 1992, pp. 3 - 28. Preliminary version in Advances in Cryptology - Eurocrypt '90 Proceedings, May 1990, Springer - Verlag, pp. 253 - 265.
    [3] Dirac, P. 1958. The Principles of Quantum Mechanics, 4th edition ed. Oxford University Press.
    [4] 23. Bennett, C. H., Brassard, G. and Ekert, A. K., "Quantum cryptography", Scientific American, October 1992, pp. 50 - 57. Appeared in December 1992 as translation into German ( Spektrum der Wissenschaft, pp. 96 - 104), Italian ( Le Scienze, pp. 84 - 93), Japanese ( Saiensu, pp. 50 - 60), and Polish (Swiat Nauki, pp. 28 - 37), among others.
    [5] ZHOU XU, “An Introduction to Quantum Key Distribution”, National University of Singapore.
    [6] Quantum computing. I Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 4 , July-Aug. 2001 Page(s): 84 -92
    [7] Quantum computing. 2 Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 5 , July-Aug. 2001 Page(s): 86 -95
    [8] Quantum computing. 3 Glassner, A.;Computer Graphics and Applications, IEEE , Volume: 21 Issue: 6 , Nov.-Dec. 2001 Page(s): 72 -82
    [9] P. Kaye, R. Laflamme , M. Mosea, "Quantum Computing", September 20, 2003
    [10]Sufyan T. Faraj, Prof. Fawzi Al – Naima, and Siddeeq Y. Ameen, "Quantum Cryptographic Key Distribution in Multiple–Access Networks" ICCT-009, 2000 IEEE

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE